

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/919010/publications.pdf Version: 2024-02-01

XINCYE AN

#	Article	IF	CITATIONS
1	Synthesis of metal–organic-frameworks on polydopamine modified cellulose nanofibril hydrogels: constructing versatile vehicles for hydrophobic drug delivery. Cellulose, 2022, 29, 379-393.	4.9	24
2	Polydopamine-Modified Cellulose Nanofibril Composite Aerogel: An Effective Dye Adsorbent. Langmuir, 2022, 38, 4164-4174.	3.5	21
3	Nanolignin filled conductive hydrogel with improved mechanical, anti-freezing, UV-shielding and transparent properties for strain sensing application. International Journal of Biological Macromolecules, 2022, 205, 442-451.	7.5	43
4	Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydrate Polymers, 2021, 251, 117107.	10.2	58
5	Isolation and utilization of tobacco-based cellulose nanofiber (TCNF) for high performance reconstructed tobacco sheet (RTS). Carbohydrate Polymers, 2021, 261, 117865.	10.2	15
6	Construction of nanocellulose-based composite hydrogel with a double packing structure as an intelligent drug carrier. Cellulose, 2021, 28, 6953-6966.	4.9	14
7	Facile preparation of lignosulfonate induced silver nanoparticles for high efficient removal of organic contaminants in wastewater. Industrial Crops and Products, 2021, 169, 113644.	5.2	19
8	A thin and flexible solid electrolyte templated by controllable porous nanocomposites toward extremely high performance all-solid-state lithium-ion batteries. Chemical Engineering Journal, 2021, 425, 130632.	12.7	30
9	Cationic cellulose nano-fibers (CCNF) as versatile flocculants of wood pulp for high wet web performance. Carbohydrate Polymers, 2020, 229, 115434.	10.2	18
10	Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon, 2020, 161, 62-70.	10.3	282
11	Facile isolation of colloidal stable chitin nano-crystals from Metapenaeus ensis shell via solid maleic acid hydrolysis and their application for synthesis of silver nanoparticles. Cellulose, 2020, 27, 9853-9875.	4.9	10
12	A three dimensional interconnected Li7La3Zr2O12 framework composite solid electrolyte utilizing lignosulfonate/ cellulose nanofiber bio-template for high performance lithium ion batteries. Journal of Power Sources, 2020, 477, 228752.	7.8	26
13	Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydrate Polymers, 2020, 234, 115942.	10.2	120
14	Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydrate Polymers, 2020, 250, 116881.	10.2	76
15	Improving sizing performance of middle layer of liquid packaging board containing high-yield pulp. Cellulose, 2020, 27, 4707-4719.	4.9	5
16	Chitin nano-crystals/sodium lignosulfonate/Ag NPs nanocomposites: a potent and green catalyst for efficient removal of organic contaminants. Cellulose, 2020, 27, 5071-5087.	4.9	26
17	Ball milling pretreatment facilitating α-amylase hydrolysis for production of starch-based bio-latex with high performance. Carbohydrate Polymers, 2020, 242, 116384.	10.2	16
18	Improving the flexibility of bamboo mechanical pulp fibers for production of high soft tissue handsheets. Industrial Crops and Products, 2020, 150, 112410.	5.2	24

XINGYE AN

#	Article	IF	CITATIONS
19	Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals. Carbohydrate Polymers, 2019, 222, 115037.	10.2	47
20	Cationic cellulose nanofibers as sustainable flocculant and retention aid for reconstituted tobacco sheet with high performance. Carbohydrate Polymers, 2019, 210, 372-378.	10.2	12
21	Study on the wet-web strength and pressability of paper sheet during the press process with the addition of nano-fibrillated cellulose (NFC). Carbohydrate Polymers, 2019, 210, 332-338.	10.2	17
22	Cellulose nanofiber (CNF) as a versatile filler for the preparation of bamboo pulp based tissue paper handsheets. Cellulose, 2019, 26, 2613-2624.	4.9	60
23	Using cationic nanofibrillated cellulose to increase the precipitated calcium carbonate retention and physical properties during reconstituted tobacco sheet preparation. Industrial Crops and Products, 2019, 130, 592-597.	5.2	16
24	Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Current Medicinal Chemistry, 2019, 26, 2502-2513.	2.4	32
25	Nanofibrillated Cellulose (NFC) as a Pore Size Mediator in the Preparation of Thermally Resistant Separators for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 4838-4844.	6.7	55
26	Aqueous Dispersion of Carbon Fibers and Expanded Graphite Stabilized from the Addition of Cellulose Nanocrystals to Produce Highly Conductive Cellulose Composites. ACS Sustainable Chemistry and Engineering, 2018, 6, 3291-3298.	6.7	33
27	Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties. ACS Applied Materials & Interfaces, 2017, 9, 5477-5485.	8.0	122
28	Synthesis of nano-fibrillated cellulose/magnetite/titanium dioxide (NFC@Fe3O4@TNP) nanocomposites and their application in the photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2017, 206, 53-64.	20.2	72
29	Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation. Carbohydrate Polymers, 2017, 169, 9-15.	10.2	63
30	Anchoring 20(R)-Ginsenoside Rg3 onto Cellulose Nanocrystals To Increase the Hydroxyl Radical Scavenging Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 7507-7513.	6.7	24
31	Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. Carbohydrate Polymers, 2017, 156, 253-258.	10.2	101
32	Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose, 2016, 23, 2409-2420.	4.9	45
33	Nano-fibrillated cellulose (NFC) as versatile carriers of TiO ₂ nanoparticles (TNPs) for photocatalytic hydrogen generation. RSC Advances, 2016, 6, 89457-89466.	3.6	32
34	Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system. Scientific Reports, 2016, 6, 36497.	3.3	40
35	TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydrate Polymers, 2016, 151, 326-334.	10.2	96
36	Anionic trash control in high-yield pulp (HYP) containing furnish by using a poly-DADMAC based commercial formulation. Journal of Industrial and Engineering Chemistry, 2014, 20, 4452-4456.	5.8	5