Sundararajan Venkatesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9190044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of mitochondrial LonP1 protease by allosteric blockade of ATP binding and hydrolysis via CDDO and its derivatives. Journal of Biological Chemistry, 2022, 298, 101719.	1.6	6
2	Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Archiv European Journal of Physiology, 2022, 474, 63-81.	1.3	6
3	A commentary on "Pl3Kâ€Î±/mTOR/BRD4 inhibitor alone or in combination with other antiâ€virals blocks replication of SARSâ€CoVâ€2 and its variants of concern including Delta and Omicronâ€. Clinical and Translational Discovery, 2022, 2, .	0.2	0
4	Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R547-R562.	0.9	14
5	Nampt Potentiates Antioxidant Defense in Diabetic Cardiomyopathy. Circulation Research, 2021, 129, 114-130.	2.0	28
6	Roles of host mitochondria in the development of COVID-19 pathology: Could mitochondria be a potential therapeutic target?. Molecular Biomedicine, 2021, 2, 38.	1.7	19
7	Cell stress management by the mitochondrial LonP1 protease – Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion, 2020, 51, 46-61.	1.6	9
8	In-silico design and synthesis of N9-substituted β-Carbolines as PLK-1 inhibitors and their in-vitro/in-vivo tumor suppressing evaluation. Bioorganic Chemistry, 2019, 88, 102913.	2.0	8
9	Bio-energetics Investigation of Candida albicans Using Real-time Extracellular Flux Analysis. Journal of Visualized Experiments, 2019, , .	0.2	1
10	Mitochondrial LonP1 protects cardiomyocytes from ischemia/reperfusion injury in vivo. Journal of Molecular and Cellular Cardiology, 2019, 128, 38-50.	0.9	65
11	Bi-allelic mutations of <i>LONP1</i> encoding the mitochondrial LonP1 protease cause pyruvate dehydrogenase deficiency and profound neurodegeneration with progressive cerebellar atrophy. Human Molecular Genetics, 2019, 28, 290-306.	1.4	27
12	Protein quality control at the interface of endoplasmic reticulum and mitochondria by Lon protease. British Journal of Pharmacology, 2018, 176, 505-507.	2.7	3
13	Acetylation and phosphorylation of human TFAM regulate TFAM–DNA interactions via contrasting mechanisms. Nucleic Acids Research, 2018, 46, 3633-3642.	6.5	63
14	HSP60 Takes a Hit: Inhibition of Mitochondrial Protein Folding. Cell Chemical Biology, 2017, 24, 543-545.	2.5	13
15	Effect of densely ionizing radiation on cardiomyocyte differentiation from human-induced pluripotent stem cells. Physiological Reports, 2017, 5, e13308.	0.7	12
16	Profound hypotonia, muscle weakness, global developmental delays with stepwise regression, and cerebellar atrophy: expansion of the LONP1 -related disease phenotype. Neuromuscular Disorders, 2017, 27, S117-S118.	0.3	1
17	CODAS Syndrome Is Associated with Mutations of LONP1, Encoding Mitochondrial AAA+ Lon Protease. American Journal of Human Genetics, 2015, 96, 121-135.	2.6	127
18	Abstract 409: Role of the Mitochondrial AAA+ Lon Protease in Cardioprotection. Circulation Research, 2015, 117, .	2.0	0

#	Article	IF	CITATIONS
19	Regulating mtDNA dynamics by TFAM phosphorylation and degradation (94.3). FASEB Journal, 2014, 28, 94.3.	0.2	0
20	Analysis of sperm telomere length in men with idiopathic infertility. Archives of Gynecology and Obstetrics, 2013, 287, 803-807.	0.8	85
21	Phosphorylation of Human TFAM in Mitochondria Impairs DNA Binding and Promotes Degradation by the AAA+ Lon Protease. Molecular Cell, 2013, 49, 121-132.	4.5	258
22	Telomere length in reproduction. Andrologia, 2013, 45, 289-304.	1.0	83
23	Mitochondrial ATP-Dependent Lon Protease. , 2013, , 3533-3540.		0
24	Segregation of sperm subpopulations in normozoospermic infertile men. Systems Biology in Reproductive Medicine, 2012, 58, 313-318.	1.0	10
25	The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood, 2012, 119, 3321-3329.	0.6	140
26	Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 56-66.	1.9	139
27	Chromosomal abnormalities & oxidative stress in women with premature ovarian failure (POF). Indian Journal of Medical Research, 2012, 135, 92.	0.4	36
28	Clinical Significance of Sperm DNA Damage Threshold Value in the Assessment of Male Infertility. Reproductive Sciences, 2011, 18, 1005-1013.	1.1	83
29	Analysis of sperm nuclear protein gene polymorphisms and DNA integrity in infertile men. Systems Biology in Reproductive Medicine, 2011, 57, 124-132.	1.0	35
30	A comprehensive work up for an asthenozoospermic man with repeated intracytoplasmic sperm injection (ICSI) failure. Andrologia, 2011, 43, 368-372.	1.0	14
31	Reactive oxygen species measurement in neat and washed semen: comparative analysis and its significance in male infertility assessment. Archives of Gynecology and Obstetrics, 2011, 283, 121-126.	0.8	46
32	An evolutionary insight into mutation of ATPase6 gene in primary ovarian insufficiency. Archives of Gynecology and Obstetrics, 2011, 284, 251-252.	0.8	2
33	Cytogenetic, Y chromosome microdeletion, sperm chromatin and oxidative stress analysis in male partners of couples experiencing recurrent spontaneous abortions. Archives of Gynecology and Obstetrics, 2011, 284, 1577-1584.	0.8	43
34	Herbo-mineral supplementation in men with idiopathic oligoasthenoteratospermia : A double blind randomized placebo-controlled trial. Indian Journal of Urology, 2011, 27, 357.	0.2	19
35	Oxidative stress and ATPase6 mutation is associated with primary ovarian insufficiency. Archives of Gynecology and Obstetrics, 2010, 282, 313-318.	0.8	53
36	Re: Decreased Sperm DNA Fragmentation After Surgical Varicocelectomy is Associated With Increased Pregnancy Rate. Journal of Urology, 2010, 184, 1577-1578.	0.2	6

#	Article	IF	CITATIONS
37	45 CLINICAL IMPLICATIONS OF DNA DAMAGE ASSESSMENT IN SPERM OF INFERTILE MEN. Reproductive BioMedicine Online, 2010, 20, S19.	1.1	0
38	86 THE CLINICAL IMPORTANCE OF SPERM DNA FRAGMENTATION ASSAY IN THE ASSESSMENT OF MALE INFERTILITY. Reproductive BioMedicine Online, 2010, 20, S34-S35.	1.1	0
39	Acridine orange binding to RNA interferes DNA fragmentation index calculation in sperm chromatin structure assay. Fertility and Sterility, 2010, 94, e37.	0.5	3
40	DNA integrity and semen quality in men with low seminal antioxidant levels. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 665, 29-36.	0.4	76
41	Clinical significance of reactive oxygen species in semen of infertile Indian men. Andrologia, 2009, 41, 251-256.	1.0	50
42	Re: Attenuation of Oxidative Stress After Varicocelectomy in Subfertile Patients With Varicocele. Journal of Urology, 2009, 181, 1964-1966.	0.2	1
43	Anti-diabetic activity of flowers of Hibiscus rosasinensis. Fìtoterapìâ, 2008, 79, 79-81.	1.1	42
44	Genetics of Male Infertility. , 0, , 144-144.		0