Demet Yılmaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9189861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses. Journal of Nuclear Materials, 2022, 563, 153619.	2.7	74
2	Optical, structural, physical, and nuclear shielding properties, and albedo parameters of TeO2–BaO–B2O3–PbO–V2O5 glasses. Journal of Physics and Chemistry of Solids, 2022, 163, 110543.	4.0	66
3	Structural, mechanical, radiation shielding properties and albedo parameters of alumina borate glasses: Role of CeO2 and Er2O3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115519.	3.5	63
4	Erbium oxide and Cerium oxide-doped borosilicate glasses as radiation shielding material. Radiation Effects and Defects in Solids, 2020, 175, 458-471.	1.2	30
5	Determination of mass attenuation coefficients and effective atomic numbers for compounds of the 3d transition elements. Radiation Physics and Chemistry, 2016, 125, 65-68.	2.8	21
6	Albedo factors of some elements in the atomic number range 26â‰ ¤ â‰ ¤ 9 for 59.54 keV. Applied Radiation and Isotopes, 2017, 122, 68-71.	1.5	16
7	Quantitative x-ray spectrometric analysis with peak to Compton ratios. Radiation Physics and Chemistry, 2015, 112, 189-194.	2.8	14
8	Determination of the saturation thickness and albedo factors for mercury(II) oxide and lead(II) oxide. Instrumentation Science and Technology, 2017, 45, 111-121.	1.8	13
9	Measurement of effective atomic number of gunshot residues using scattering of gamma rays. Radiation Physics and Chemistry, 2014, 102, 68-71.	2.8	7
10	Characterization of the effective atomic number for first row transition elements by the ratio of coherent to compton scattering intensities obtained by wavelength dispersive X-ray fluorescence. Instrumentation Science and Technology, 2016, 44, 642-650.	1.8	7
11	The use of scattering peaks for matrix effect correction in WDXRF analysis. Radiation Physics and Chemistry, 2018, 153, 17-20.	2.8	7
12	Dependence of albedo factors on mean atomic number for 662†keV gamma photons. Applied Radiation and Isotopes, 2019, 154, 108870.	1.5	7
13	The K-beta/K-alpha intensity ratios of some elements at different azimuthal scattering angles at 59.54 keV. Canadian Journal of Physics, 2017, 95, 220-224.	1.1	6
14	Efficient removal of iodine-131 from radioactive waste by nanomaterials. Instrumentation Science and Technology, 2021, 49, 45-54.	1.8	4
15	Effective atomic numbers of boron compounds obtained using Rayleigh to compton scattering intensity ratio. Applied Radiation and Isotopes, 2021, 174, 109753.	1.5	4
16	Measurement of mass attenuation coefficients for undoped and boron nitride–doped magnesium diboride superconductors in the x-ray region 8.04–59.5 keV. Spectroscopy Letters, 2017, 50, 299-300.	1.0	3
17	X- and gamma-ray irradiation effects on vanadium pentoxide thin films. Spectroscopy Letters, 2018, 51, 297-301.	1.0	3
18	Determination of albedo parameters of the organometallic halide perovskite films. Radiation Physics and Chemistry, 2020, 177, 109091.	2.8	3

Demet Yılmaz

#	Article	IF	CITATIONS
19	Albedo parameters and effective atomic numbers of PEDOT/Carbon black composites. Radiation Physics and Chemistry, 2021, 182, 109378.	2.8	3
20	Energy absorption buildup factors of some potential bioactive compounds in the energy region 0.015–15 MeV. Spectroscopy Letters, 2017, 50, 301-306.	1.0	2
21	L-shell differential cross-section and alignment of uranium at 59.54-keV photon energy. Applied Radiation and Isotopes, 2017, 130, 60-65.	1.5	2
22	Angular dependence of L X-rays of samarium, hafnium, and lead. Spectroscopy Letters, 2019, 52, 261-266.	1.0	2
23	Variation of scattering intensity ratios with mean atomic number using a dilution technique in EDXRF. Applied Radiation and Isotopes, 2019, 145, 7-11.	1.5	2
24	An experimental work on radiation protection features of some bioactive compounds of Mannich bases. Radiation Physics and Chemistry, 2020, 176, 108986.	2.8	2
25	Albedo factors of some boron compounds at 59.54ÂkeV. Applied Radiation and Isotopes, 2021, 174, 109756.	1.5	2
26	Determination of the multiple scattered fraction as a function of target thickness. Canadian Journal of Physics, 2017, 95, 595-599.	1.1	1
27	Buildup factors and kerma for Al2O3 and SiO2 in the energy range 0.015-15â€MeV. AlP Conference Proceedings, 2017, , .	0.4	1
28	L X-ray relative intensity ratios of uranium, lead, hafnium and samarium. AIP Conference Proceedings, 2018, , .	0.4	1
29	Effect of mechanical noise upon X-ray fluorescence analysis. Instrumentation Science and Technology, 2019, 47, 666-677.	1.8	1
30	Mean atomic number analysis by the coherent to backscattering intensity ratios at 59.54 and 661.62 photon energies. Applied Radiation and Isotopes, 2020, 155, 108926.	1.5	1
31	Gamma ray characterization of the albedo of atmospheric dust from Southeast Anatolia, Turkey. Instrumentation Science and Technology, 0, , 1-12.	1.8	1
32	Effect of pressure on pressed pellets in XRS. X-Ray Spectrometry, 2020, 49, 580-586.	1.4	0
33	Characterization of the influence of the sample thickness upon the background in energy dispersive x-ray fluorescence (EDXRF). Instrumentation Science and Technology, 2021, 49, 342-350.	1.8	Ο
34	Study of the relationship between different intensity ratios and effective atomic number in diluted uranium samples. Radiation Physics and Chemistry, 2021, 179, 109213.	2.8	0
35	A Wegener Granulomatosis Case Presented with Arthralgia. Eurasian Journal of Family Medicine Avrasya Aile HekimliÄŸi Dergisi, 2019, 8, 45-50.	0.1	0
36	Influence of the sample thickness upon the albedo factors using 59.54 and 662 keV photon energies. Instrumentation Science and Technology, 0, , 1-9.	1.8	0