List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9189851/publications.pdf Version: 2024-02-01

		147801	206112
76	2,611	31	48
papers	citations	h-index	g-index
113	113	113	2807
all docs	docs citations	times ranked	citing authors

FU-SHUN LIANC

#	Article	IF	CITATIONS
1	Activating room-temperature phosphorescence of 1,8-naphthalimide by doping into aromatic dicarboxylic acids. Chemical Communications, 2022, 58, 3641-3644.	4.1	19
2	Transformation of Thioacids into Carboxylic Acids via a Visible-Light-Promoted Atomic Substitution Process. Organic Letters, 2022, 24, 2020-2024.	4.6	6
3	Recent advances of room temperature phosphorescence and long persistent luminescence by doping system of purely organic molecules. Dyes and Pigments, 2022, 204, 110400.	3.7	12
4	Chitosan-Coated Metal–Organic-Framework Nanoparticles as Catalysts for Tandem Deacetalization–Knoevenagel Condensation Reactions. ACS Applied Nano Materials, 2020, 3, 6316-6320.	5.0	54
5	Photo- and dioxygen-enabled radical C(sp ³)–N(sp ²) cross-coupling between guanidines and perfluoroalkyl iodides. Organic and Biomolecular Chemistry, 2019, 17, 8695-8700.	2.8	7
6	Visible-Light-Promoted [5 + 1] Annulation Initiated by Electron-Donor–Acceptor Complexes: Synthesis of Perfluoroalkyl- <i>s</i> -Triazines. Organic Letters, 2019, 21, 3072-3076.	4.6	44
7	Utilizing d–pπ Bonds for Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 6645-6649.	13.8	154
8	Utilizing d–pπ Bonds for Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 6717-6721.	2.0	107
9	<i>t</i> -BuONa-mediated direct C–H halogenation of electron-deficient (hetero)arenes. Organic and Biomolecular Chemistry, 2018, 16, 886-890.	2.8	20
10	Aza-tricycles containing a perfluoroalkyl group: synthesis, structure and fluorescence. Organic and Biomolecular Chemistry, 2018, 16, 8950-8954.	2.8	10
11	Ambient-Light-Promoted Three-Component Annulation: Synthesis of Perfluoroalkylated Pyrimidines. Organic Letters, 2017, 19, 2358-2361.	4.6	49
12	Photoredox atalyzed Dimerization of Arylalkenes <i>via</i> an Oxidative [4+2] Cycloaddition Sequence: Synthesis of Naphthalene Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 3887-3896.	4.3	28
13	With DBU-activated N-bromophthalimide as potential N-sources to achieve P–N cross-coupling of P(O)–H compounds. Tetrahedron Letters, 2016, 57, 2931-2934.	1.4	8
14	One-pot, two-step conversion of alkynes to α-amino (α,α-diamino) ketones with a DMF-activated N-bromoimide strategy. RSC Advances, 2016, 6, 93325-93329.	3.6	10
15	Direct α-amination of nitrones achieved by DBU-activated N -haloimides. Tetrahedron Letters, 2016, 57, 3823-3826.	1.4	5
16	Visible-Light-Mediated Oxidative Dimerization of Arylalkynes in the Open Air: Stereoselective Synthesis of (<i>Z</i>)-1,4-Enediones. Organic Letters, 2016, 18, 5860-5863.	4.6	22
17	Metal-free C–N cross-coupling of electrophilic compounds and N-haloimides. RSC Advances, 2015, 5, 65600-65603.	3.6	10
18	Rapid α-Amination of N-Substituted Indoles by Using DBU-Activated N-Haloimides as Nitrogen Sources. Synlett, 2014, 26, 116-122.	1.8	3

#	Article	IF	CITATIONS
19	1,4-Diazabicyclo[2.2.2]octane-Mediated Ring Opening of 1-Acetylcyclopropanecarboxamides and Its Application to the Construction of 3-Alkylated Î ³ -Lactams. Synlett, 2014, 25, 2271-2274.	1.8	9
20	Alkyne aminohalogenation enabled by DBU-activated N-haloimides: direct synthesis of halogenated enamines. Chemical Communications, 2014, 50, 2360.	4.1	41
21	Hypervalent iodine(iii)-mediated cyclopropa(e)nation of alkenes/alkynes under mild conditions. Organic and Biomolecular Chemistry, 2014, 12, 1341.	2.8	31
22	Facile and efficient synthesis of 1-haloalkynes via DBU-mediated reaction of terminal alkynes and N-haloimides under mild conditions. RSC Advances, 2014, 4, 30046-30049.	3.6	43
23	DABCO-catalyzed ring opening of activated cyclopropanes and recyclization leading to Î ³ -lactams with an all-carbon quaternary center. Chemical Communications, 2014, 50, 10491-10494.	4.1	20
24	Synthesis of spiro[isoquinolinone-4,2′-oxiranes] and isoindolinones via a multicomponent reaction of 2-acetyl-oxirane-2-carboxamides, arylaldehydes and malononitrile. Chemical Communications, 2014, 50, 6995.	4.1	10
25	Multicomponent reaction of chalcones, malononitrile and DMF leading to Î ³ -ketoamides. Organic and Biomolecular Chemistry, 2014, 12, 6389.	2.8	15
26	Direct Î \pm -C-H amination of Î ² -dicarbonyl compounds using DBU-activated N-haloimides as nitrogen sources. RSC Advances, 2014, 4, 33765.	3.6	13
27	Polyoxometalate-Induced New Self-Assemblies Based on Copper Ions and Bichelate-Bridging Ligands. Crystal Growth and Design, 2013, 13, 3454-3462.	3.0	48
28	Organocatalyzed Anion Relay Leading to Functionalized 2,3-Dihydrofurans. Organic Letters, 2013, 15, 3978-3981.	4.6	43
29	Zinc phthalocyanine π-conjugately linked with electron-withdrawing benzothiadiazole towards broad absorption. Tetrahedron Letters, 2013, 54, 5953-5955.	1.4	7
30	Halonium-initiated double oxa-cyclization cascade as a synthetic strategy for halogenated furo[3,2-c]pyran-4-ones. Organic and Biomolecular Chemistry, 2013, 11, 7212.	2.8	12
31	<i>N</i> -Bromoimide/DBU Combination as a New Strategy for Intermolecular Allylic Amination. Organic Letters, 2013, 15, 5186-5189.	4.6	53
32	<i>N</i> -Bromosuccinimide/1,8-Diazabicyclo[5.4.1]undec-7-ene Combination: β-Amination of Chalcones via a Tandem Bromoamination/Debromination Sequence. Organic Letters, 2013, 15, 852-855.	4.6	43
33	Otherwise inert reaction of sulfonamides/carboxamides with formamides via proton transfer-enhanced reactivity. Organic and Biomolecular Chemistry, 2013, 11, 2460.	2.8	25
34	N-Bromosuccinimide–carboxylic acid combination: mild and efficient access to dibromination of unsaturated carbonyl compounds. RSC Advances, 2013, 3, 5382.	3.6	27
35	Multi-component anion relay cascade of 1-acetylcyclopropanecarboxamides, aldehydes and acrylonitrile: access to biscyanoethylated furo[3,2-c]pyridinones. Organic and Biomolecular Chemistry, 2012, 10, 4571.	2.8	15
36	Halonium-Initiated C–O Bond Formation via Umpolung of α-Carbon to the Carbonyl: Efficient Access to 5-Amino-3(2 <i>H</i>)-furanones. Organic Letters, 2012, 14, 712-715.	4.6	37

#	Article	IF	CITATIONS
37	Cyanation of α,β-unsaturated enones by malononitrile in open air under metal-catalyst-free conditions. Chemical Communications, 2012, 48, 9879.	4.1	34
38	Copper-catalyzed aerobic oxidative synthesis of α-ketoamides from methyl ketones, amines and NIS at room temperature. Organic and Biomolecular Chemistry, 2012, 10, 9237.	2.8	63
39	One-Pot Cascade Leading to Direct α-Imidation of Ketones by a Combination of <i>N</i> -Bromosuccinimide and 1,8-Diazabicyclo[5.4.1]undec-7-ene. Organic Letters, 2012, 14, 4202-4205.	4.6	72
40	Halonium-initiated electrophilic cascades of 1-alkenoylcyclopropane carboxamides: efficient access to dihydrofuropyridinones and 3(2H)-furanones. Chemical Communications, 2011, 47, 12394.	4.1	28
41	Azaâ~'Oxyâ~'Carbanion Relay via Non-Brook Rearrangement: Efficient Synthesis of Furo[3,2- <i>c</i>]pyridinones. Journal of the American Chemical Society, 2011, 133, 1781-1783.	13.7	31
42	Iron(II)-Catalyzed Oxidation of sp ³ Câ^'H Bonds Adjacent to a Nitrogen Atom of Unprotected Arylureas with <i>tert</i> -Butyl Hydroperoxide in Water. Organic Letters, 2011, 13, 1674-1677.	4.6	34
43	Femtosecond transient photophysics of polyfluorene copolymers tuned by carbazole side group. Chemical Physics Letters, 2011, 504, 52-55.	2.6	0
44	Synthesis and photovoltaic properties of low-bandgap polymers based on N-arylcarbazole. Polymer, 2011, 52, 1748-1754.	3.8	23
45	Acetoacetanilides as Masked Isocyanates: Facile and Efficient Synthesis of Unsymmetrically Substituted Ureas. Organic Letters, 2010, 12, 4220-4223.	4.6	45
46	Domino reaction of arylaldehydes and 1-acetylcyclopropanecarboxamides: one-pot access to highly functionalized spiropiperidine-2,4-diones. Tetrahedron Letters, 2010, 51, 6349-6352.	1.4	15
47	Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1803-1808.	6.2	27
48	Broad absorbing low-bandgap polythiophene derivatives incorporating separate and content-tunable benzothiadiazole and carbazole moieties for polymer solar cells. European Polymer Journal, 2010, 46, 1770-1777.	5.4	14
49	A New Route to Multifunctionalized p-Terphenyls and Heteroaryl Analogues via [5C + 1C(N)] Annulation Strategy. Journal of Organic Chemistry, 2009, 74, 899-902.	3.2	36
50	One-Pot Tandem Double-Aldol Reaction/Aza-Addition of Acetylacetamides and <i>o</i> -Phthalaldehyde Leading to Spiroindan-2,2′-pyrrolidines. Organic Letters, 2009, 11, 93-96.	4.6	20
51	Design and Synthesis of Alternating Regioregular Oligothiophenes/Benzothiadiazole Copolymers for Organic Solar Cells. Macromolecules, 2009, 42, 6107-6114.	4.8	48
52	Efficient three-component one-pot synthesis of fully substituted pyridin-2(1H)-ones via tandem Knoevenagel condensation–ring-opening of cyclopropane–intramolecular cyclization. Chemical Communications, 2009, , 3636.	4.1	24
53	Crystalline low band-gap alternating indolocarbazole and benzothiadiazole-cored oligothiophene copolymer for organic solar cell applications. Chemical Communications, 2008, , 5315.	4.1	125
54	Benzothiadiazole-cored regioregular oligothiophenes as building blocks for novel crystalline low band-gap conjugated polymers with solution processibility. , 2008, , .		0

#	Article	IF	CITATIONS
55	Carbon Tetrabromide-Mediated Carbonâ^'Sulfur Bond Formation via a Sulfenyl Bromide Intermediate. Organic Letters, 2008, 10, 2485-2488.	4.6	38
56	Carbon Tetrabromide Promoted Reaction of Amines with Carbon Disulfide: Facile and Efficient Synthesis of Thioureas and Thiuram Disulfides. Synthesis, 2008, 2008, 3579-3584.	2.3	30
57	BF3·OEt2-Mediated C-C Bond-Forming Reaction of α-Hydroxyketene-(S,S)-acetals with Active Methylene Compounds and Its Application in the Synthesis of Substituted 3,4-Dihydro-2-pyridones. Synlett, 2007, 2007, 0156-0160.	1.8	0
58	Facile and Efficient Synthesis of Substituted 1,4â€Dithiafulvalenes from βâ€Dicarbonyl Compounds. Synthetic Communications, 2007, 37, 3077-3087.	2.1	4
59	Efficient One-Pot Synthesis of Polyfunctionalized Thiophenes via an Amine-Mediated Ring Opening of EWG-Activated 2-Methylene-1,3-dithioles. Organic Letters, 2007, 9, 4845-4848.	4.6	42
60	A tandem reaction of 2-acetylmethylene-1,3-dithiolanes via fragmentation of the dithiolane ring in the presence of amines: a facile route to functionalized thioamides. Tetrahedron Letters, 2007, 48, 7938-7941.	1.4	14
61	Efficient Synthesis of Highly Functionalized Dihydropyrido[2,3-d]pyrimidines by a Double Annulation Strategy from α-Alkenoyl-α-carbamoyl Ketene-(S,S)-acetals. Journal of Organic Chemistry, 2006, 71, 1094-1098.	3.2	58
62	Intramolecular Thia-anti-Michael Addition of a Sulfur Anion to Enones:Â A Regiospecific Approach to Multisubstituted Thiophene Derivatives. Journal of Organic Chemistry, 2006, 71, 8006-8010.	3.2	52
63	Copper-Mediated Câ^'N Bond Formation via Direct Aminolysis of Dithioacetals. Organic Letters, 2006, 8, 2547-2550.	4.6	38
64	Domino Reaction of Acyclic α,α-DialkenoylketeneS,S-Acetals and Diamines: Efficient Synthesis of Tetracyclic Thieno[2,3-b]thiopyran-Fused Imidazo[1,2-a]pyridine/Pyrido[1,2-a]pyrimidines. Advanced Synthesis and Catalysis, 2006, 348, 1986-1990.	4.3	32
65	Synthesis and electroluminescent property of poly(p-phenylenevinylene)s bearing triarylamine pendants. Polymer, 2005, 46, 3767-3775.	3.8	104
66	Synthesis and electrochemical and electroluminescent properties ofN-phenylcarbazole-substituted poly(p-phenylenevinylene). Journal of Polymer Science Part A, 2005, 43, 5765-5773.	2.3	31
67	Oxadiazole-Functionalized Europium(III) β-Diketonate Complex for Efficient Red Electroluminescence. Chemistry of Materials, 2003, 15, 1935-1937.	6.7	162
68	Synthesis, characterization, photoluminescent and electroluminescent properties of new conjugated 2,2′-(arylenedivinylene)bis-8-substituted quinolines. Journal of Materials Chemistry, 2003, 13, 1392-1399.	6.7	31
69	Syntheses and Characterization of Tributyltin(IV) Carboxylates Containing αâ€Oxoketene Cyclic Dithioacetals. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2003, 33, 411-422.	1.8	3
70	Blue organic light-emitting diodes based on an oxadiazole-containing organic molecule exhibiting excited state intramolecular proton transfer. Synthetic Metals, 2003, 137, 1123-1124.	3.9	16
71	White organic electroluminescence based on a new boron complex. Synthetic Metals, 2003, 137, 1109-1110.	3.9	6
72	A hydroxyphenyloxadiazole lithium complex as a highly efficient blue emitter and interface material in organic light-emitting diodes. Journal of Materials Chemistry, 2003, 13, 2922.	6.7	26

#	Article	IF	CITATIONS
73	Oxadiazole-containing material with intense blue phosphorescence emission for organic light-emitting diodes. Applied Physics Letters, 2002, 81, 4-6.	3.3	71
74	Novel bis(8-hydroxyquinoline)phenolato–aluminum complexes for organic light-emitting diodes. Synthetic Metals, 2002, 131, 1-5.	3.9	51
75	New PPV oligomers containing 8-substituted quinoline for light-emitting diodes. Tetrahedron Letters, 2002, 43, 3427-3430.	1.4	28
76	Blue organic light-emitting devices with an oxadiazole-containing emitting layer exhibiting excited state intramolecular proton transfer. Chemical Physics Letters, 2002, 358, 24-28.	2.6	70