Sih Min Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9189695/publications.pdf

Version: 2024-02-01

25	1,227	17 h-index	23
papers	citations		g-index
26	26	26	2165
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dietary Advanced Glycation End Products and Risk Factors for Chronic Disease: A Systematic Review of Randomised Controlled Trials. Nutrients, 2016, 8, 125.	4.1	142
2	Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clinical Science, 2016, 130, 711-720.	4.3	114
3	Derivative of Bardoxolone Methyl, dh404, in an Inverse Dose-Dependent Manner Lessens Diabetes-Associated Atherosclerosis and Improves Diabetic Kidney Disease. Diabetes, 2014, 63, 3091-3103.	0.6	99
4	Expression, Localization, and Function of the Thioredoxin System in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 730-741.	6.1	96
5	Processed foods drive intestinal barrier permeability and microvascular diseases. Science Advances, 2021, 7, .	10.3	80
6	Combating oxidative stress in diabetic complications with Nrf2 activators: How much is too much?. Redox Report, 2014, 19, 107-117.	4.5	69
7	Direct Endothelial Nitric Oxide Synthase Activation Provides Atheroprotection in Diabetes-Accelerated Atherosclerosis. Diabetes, 2015, 64, 3937-3950.	0.6	60
8	Lipoxins Protect Against Inflammation in Diabetes-Associated Atherosclerosis. Diabetes, 2018, 67, 2657-2667.	0.6	60
9	Nrf2 Activation Is a Potential Therapeutic Approach to Attenuate Diabetic Retinopathy., 2018, 59, 815.		58
10	Lipoxins Regulate the Early Growth Response–1 Network and Reverse Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1437-1448.	6.1	48
11	Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility. Diabetes, 2020, 69, 83-98.	0.6	48
12	Deficiency in Apoptosis-Inducing Factor Recapitulates Chronic Kidney Disease via Aberrant Mitochondrial Homeostasis. Diabetes, 2016, 65, 1085-1098.	0.6	47
13	Lack of the Antioxidant Glutathione Peroxidase-1 (GPx1) Exacerbates Retinopathy of Prematurity in Mice., 2013, 54, 555.		40
14	Tranilast attenuates the up-regulation of thioredoxin-interacting protein and oxidative stress in an experimental model of diabetic nephropathy. Nephrology Dialysis Transplantation, 2011, 26, 100-110.	0.7	39
15	Ebselen by modulating oxidative stress improves hypoxia-induced macroglial $M\tilde{A}\frac{1}{4}$ ller cell and vascular injury in the retina. Experimental Eye Research, 2015, 136, 1-8.	2.6	38
16	Use of Readily Accessible Inflammatory Markers to Predict Diabetic Kidney Disease. Frontiers in Endocrinology, 2018, 9, 225.	3.5	38
17	Long Term High Protein Diet Feeding Alters the Microbiome and Increases Intestinal Permeability, Systemic Inflammation and Kidney Injury in Mice. Molecular Nutrition and Food Research, 2021, 65, e2000851.	3.3	34
18	The Modified Selenenyl Amide, M-hydroxy Ebselen, Attenuates Diabetic Nephropathy and Diabetes-Associated Atherosclerosis in ApoE/GPx1 Double Knockout Mice. PLoS ONE, 2013, 8, e69193.	2.5	31

#	Article	IF	CITATION
19	Protein kinase C-Â inhibition attenuates the progression of nephropathy in non-diabetic kidney disease. Nephrology Dialysis Transplantation, 2009, 24, 1782-1790.	0.7	21
20	Inactivation of Protein Tyrosine Phosphatases Enhances Interferon Signaling in Pancreatic Islets. Diabetes, 2015, 64, 2489-2496.	0.6	17
21	<scp>FT</scp> 23, an orally active antifibrotic compound, attenuates structural and functional abnormalities in an experimental model of diabetic cardiomyopathy. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 650-656.	1.9	16
22	The Complement Pathway: New Insights into Immunometabolic Signaling in Diabetic Kidney Disease. Antioxidants and Redox Signaling, 2022, 37, 781-801.	5 . 4	12
23	Targeted deletion of nicotinamide adenine dinucleotide phosphate oxidase 4Âfrom proximal tubules is dispensable for diabetic kidney disease development. Nephrology Dialysis Transplantation, 2021, 36, 988-997.	0.7	9
24	Exploring the role of the metabolite-sensing receptor GPR109a in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2020, 318, F835-F842.	2.7	8
25	Targeting Methylglyoxal in Diabetic Kidney Disease Using the Mitochondria-Targeted Compound MitoGamide. Nutrients, 2021, 13, 1457.	4.1	3