
Anna Walkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9189561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochar dose determines methane uptake and methanotroph abundance in Haplic Luvisol. Science of the Total Environment, 2022, 806, 151259.	3.9	16
2	Variations in Soil Properties and CO2 Emissions of a Temperate Forest Gully Soil along a Topographical Gradient. Forests, 2021, 12, 226.	0.9	3
3	Contrasting Effects of Forest Type and Stand Age on Soil Microbial Activities: An Analysis of Local Scale Variability. Biology, 2021, 10, 850.	1.3	6
4	How Can Litter Modify the Fluxes of CO2 and CH4 from Forest Soils? A Mini-Review. Forests, 2021, 12, 1276.	0.9	8
5	Soil properties and not high CO2 affect CH4 production and uptake in periodically waterlogged arable soils. Journal of Soils and Sediments, 2020, 20, 1231-1240.	1.5	8
6	Biochar promotes the reduction of N2O to N2 and concurrently suppresses the production of N2O in calcareous soil. Geoderma, 2020, 362, 114091.	2.3	30
7	Early Response of Soil Microbial Biomass and Activity to Biofertilizer Application in Degraded Brunic Arenosol and Abruptic Luvisol of Contrasting Textures. Agronomy, 2020, 10, 1347.	1.3	8
8	Biochar addition reinforces microbial interspecies cooperation in methanation of sugar beet waste (pulp). Science of the Total Environment, 2020, 730, 138921.	3.9	26
9	Methanogenesis and aerobic methanotrophy in arable soils contaminated with cadmium. Catena, 2020, 189, 104480.	2.2	8
10	Usage of biochar for mitigation of CO2 emission and enhancement of CH4 consumption in forest and orchard Haplic Luvisol (Siltic) soils. Applied Soil Ecology, 2020, 156, 103711.	2.1	19
11	Evaluation of Nanocomposite Made of Polylactic Acid and Nanocellulose from Carrot Pomace Modified with Silver Nanoparticles. Polymers, 2020, 12, 812.	2.0	25
12	The effects of humic substances on DNA isolation from soils. PeerJ, 2020, 8, e9378.	0.9	27
13	New biochars from raspberry and potato stems absorb more methane than wood offcuts and sunflower husk biochars. International Agrophysics, 2020, 34, 355-364.	0.7	7
14	Effect of lead and chloride ions on methane production in arable soils. International Agrophysics, 2020, 34, 185-193.	0.7	3
15	Biocatalytic conversion of methane – selected aspects. Current Opinion in Chemical Engineering, 2019, 26, 28-32.	3.8	5
16	Interactive effects of nitrate and oxygen on methane oxidation in three different soils. Soil Biology and Biochemistry, 2019, 133, 116-118.	4.2	24
17	Effect of encapsulated and free-living cells of Chlorella vulgaris L. on nitrogen retention in soils. International Agrophysics, 2019, 33, 127-136.	0.7	3
18	Electromagnetic field pretreatment of <i>Sinapis alba</i> seeds improved cadmium phytoextraction. International Journal of Phytoremediation, 2018, 20, 338-342.	1.7	14

#	Article	IF	CITATIONS
19	Methanotrophs are favored under hypoxia in ammonium-fertilized soils. Biology and Fertility of Soils, 2018, 54, 861-870.	2.3	29
20	Methane oxidation in lead-contaminated mineral soils under different moisture levels. Environmental Science and Pollution Research, 2017, 24, 25346-25354.	2.7	16
21	Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions. Environmental Pollution, 2016, 213, 403-411.	3.7	11
22	Plant growth regulators-assisted phytoextraction. Biologia Plantarum, 2014, 58, 1-8.	1.9	76
23	Kinetics of methane oxidation in selected mineral soils. International Agrophysics, 2012, 26, 401-406.	0.7	17