
Tamir Tuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9189524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Evolutionarily Conserved Mechanism for Controlling the Efficiency of Protein Translation. Cell, 2010, 141, 344-354.	13.5	759
2	Translation efficiency is determined by both codon bias and folding energy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3645-3650.	3.3	489
3	The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Research, 2014, 42, 9171-9181.	6.5	222
4	Composite effects of gene determinants on the translation speed and density of ribosomes. Genome Biology, 2011, 12, R110.	13.9	185
5	The Average Common Substring Approach to Phylogenomic Reconstruction. Journal of Computational Biology, 2006, 13, 336-350.	0.8	184
6	Genome-Scale Analysis of Translation Elongation with a Ribosome Flow Model. PLoS Computational Biology, 2011, 7, e1002127.	1.5	175
7	Multiple roles of the coding sequence 5′ end in gene expression regulation. Nucleic Acids Research, 2015, 43, 13-28.	6.5	165
8	Determinants of Protein Abundance and Translation Efficiency in S. cerevisiae. PLoS Computational Biology, 2007, 3, e248.	1.5	116
9	Maximum likelihood of phylogenetic networks. Bioinformatics, 2006, 22, 2604-2611.	1.8	112
10	Determinants of Translation Elongation Speed and Ribosomal Profiling Biases in Mouse Embryonic Stem Cells. PLoS Computational Biology, 2012, 8, e1002755.	1.5	106
11	Association between translation efficiency and horizontal gene transfer within microbial communities. Nucleic Acids Research, 2011, 39, 4743-4755.	6.5	99
12	Modelling the Efficiency of Codon–tRNA Interactions Based on Codon Usage Bias. DNA Research, 2014, 21, 511-526.	1.5	94
13	A model for competition for ribosomes in the cell. Journal of the Royal Society Interface, 2016, 13, 20151062.	1.5	94
14	Strong association between mRNA folding strength and protein abundance in S. cerevisiae. EMBO Reports, 2012, 13, 272-277.	2.0	89
15	New Universal Rules of Eukaryotic Translation Initiation Fidelity. PLoS Computational Biology, 2013, 9, e1003136.	1.5	89
16	Inferring Phylogenetic Networks by the Maximum Parsimony Criterion: A Case Study. Molecular Biology and Evolution, 2006, 24, 324-337.	3.5	74
17	Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution. Nucleic Acids Research, 2016, 44, gkw764.	6.5	70
18	Translation efficiency in humans: tissue specificity, global optimization and differences between developmental stages. Nucleic Acids Research, 2010, 38, 2964-2974.	6.5	69

#	Article	IF	CITATIONS
19	Stability Analysis of the Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1545-1552.	1.9	68
20	stAlcalc: tRNA adaptation index calculator based on species-specific weights. Bioinformatics, 2017, 33, 589-591.	1.8	68
21	Estimation of ribosome profiling performance and reproducibility at various levels of resolution. Biology Direct, 2016, 11, 24.	1.9	67
22	Entrainment to Periodic Initiation and Transition Rates in a Computational Model for Gene Translation. PLoS ONE, 2014, 9, e96039.	1.1	65
23	Enhancing heterologous expression in <i>Chlamydomonas reinhardtii</i> by transcript sequence optimization. Plant Journal, 2018, 94, 22-31.	2.8	62
24	A comparative genomics study on the effect of individual amino acids on ribosome stalling. BMC Genomics, 2015, 16, S5.	1.2	58
25	The extent of ribosome queuing in budding yeast. PLoS Computational Biology, 2018, 14, e1005951.	1.5	55
26	Mean of the Typical Decoding Rates: A New Translation Efficiency Index Based on the Analysis of Ribosome Profiling Data. G3: Genes, Genomes, Genetics, 2015, 5, 73-80.	0.8	54
27	Reconstructing ancestral gene content by coevolution. Genome Research, 2010, 20, 122-132.	2.4	49
28	Codon bias, tRNA pools, and horizontal gene transfer. Mobile Genetic Elements, 2011, 1, 75-77.	1.8	49
29	Ribosome flow model with positive feedback. Journal of the Royal Society Interface, 2013, 10, 20130267.	1.5	47
30	Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach. Journal of the Royal Society Interface, 2014, 11, 20140713.	1.5	45
31	Properties of untranslated regions of the S. cerevisiae genome. BMC Genomics, 2009, 10, 391.	1.2	44
32	Conservation of the relative tRNA composition in healthy and cancerous tissues. Rna, 2012, 18, 640-652.	1.6	42
33	Genomic analysis of COP9 signalosome function in Drosophila melanogaster reveals a role in temporal regulation of gene expression. Molecular Systems Biology, 2007, 3, 108.	3.2	41
34	Selection for Translation Efficiency on Synonymous Polymorphisms in Recent Human Evolution. Genome Biology and Evolution, 2011, 3, 749-761.	1.1	41
35	Rationally designed, heterologous <i>S. cerevisiae</i> transcripts expose novel expression determinants. RNA Biology, 2015, 12, 972-984.	1.5	39
36	On the Ribosomal Density that Maximizes Protein Translation Rate. PLoS ONE, 2016, 11, e0166481.	1.1	35

#	Article	IF	CITATIONS
37	Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells. BMC Medical Genomics, 2009, 2, 46.	0.7	34
38	Metabolic modeling of endosymbiont genome reduction on a temporal scale. Molecular Systems Biology, 2011, 7, 479.	3.2	34
39	Quantifying the Effect of Ribosomal Density on mRNA Stability. PLoS ONE, 2014, 9, e102308.	1.1	34
40	Ribosome Flow Model on a Ring. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 1429-1439.	1.9	34
41	Codon-based indices for modeling gene expression and transcript evolution. Computational and Structural Biotechnology Journal, 2021, 19, 2646-2663.	1.9	33
42	Accurate, Model-Based Tuning of Synthetic Gene Expression Using Introns in S. cerevisiae. PLoS Genetics, 2014, 10, e1004407.	1.5	31
43	Alternative Transcription Initiation and the AUG Context Configuration Control Dual-Organellar Targeting and Functional Competence of Arabidopsis Lon1 Protease. Molecular Plant, 2014, 7, 989-1005.	3.9	31
44	Sensitivity of mRNA Translation. Scientific Reports, 2015, 5, 12795.	1.6	31
45	Contraction after small transients. Automatica, 2016, 67, 178-184.	3.0	31
46	Evolutionary Rate and Gene Expression Across Different Brain Regions. Genome Biology, 2008, 9, R142.	13.9	30
47	Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinformatics, 2010, 11, S38.	1.2	29
48	Computational analysis of nascent peptides that induce ribosome stalling and their proteomic distribution in <i>Saccharomyces cerevisiae</i> . Rna, 2017, 23, 983-994.	1.6	29
49	Explicit Expression for the Steady-State Translation Rate in the Infinite-Dimensional Homogeneous Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 1322-1328.	1.9	28
50	Nucleotide sequence composition adjacent to intronic splice sites improves splicing efficiency via its effect on pre-mRNA local folding in fungi. Rna, 2015, 21, 1704-1718.	1.6	28
51	Modelling and measuring intracellular competition for finite resources during gene expression. Journal of the Royal Society Interface, 2019, 16, 20180887.	1.5	28
52	Forbidden pentaâ€peptides. Protein Science, 2007, 16, 2251-2259.	3.1	26
53	On the Steady-State Distribution in the Homogeneous Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1724-1736.	1.9	26
54	Complementary Post Transcriptional Regulatory Information is Detected by PUNCH-P and Ribosome Profiling. Scientific Reports, 2016, 6, 21635.	1.6	25

#	Article	IF	CITATIONS
55	Parsimony Score of Phylogenetic Networks: Hardness Results and a Linear-Time Heuristic. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009, 6, 495-505.	1.9	24
56	Efficient Manipulations of Synonymous Mutations for Controlling Translation Rate: An Analytical Approach. Journal of Computational Biology, 2012, 19, 200-231.	0.8	24
57	Three-dimensional eukaryotic genomic organization is strongly correlated with codon usage expression and function. Nature Communications, 2014, 5, 5876.	5.8	24
58	Widespread signatures of local mRNA folding structure selection in four Dengue virus serotypes. BMC Genomics, 2015, 16, S4.	1.2	24
59	A code for transcription elongation speed. RNA Biology, 2018, 15, 81-94.	1.5	24
60	High-resolution modeling of the selection on local mRNA folding strength in coding sequences across the tree of life. Genome Biology, 2020, 21, 63.	3.8	24
61	Transcript features alone enable accurate prediction and understanding of gene expression in S. cerevisiae. BMC Bioinformatics, 2013, 14, S1.	1.2	23
62	Sequence Features of E. coli mRNAs Affect Their Degradation. PLoS ONE, 2011, 6, e28544.	1.1	22
63	Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation. DNA Research, 2018, 25, 195-205.	1.5	22
64	Widespread non-modular overlapping codes in the coding regions*. Physical Biology, 2020, 17, 031002.	0.8	22
65	Genome-wide analysis of horizontally acquired genes in the genus Mycobacterium. Scientific Reports, 2018, 8, 14817.	1.6	21
66	Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions. Human Molecular Genetics, 2011, 20, 3606-3619.	1.4	20
67	Properties and determinants of codon decoding time distributions. BMC Genomics, 2014, 15, S13.	1.2	20
68	Optimal Down Regulation of mRNA Translation. Scientific Reports, 2017, 7, 41243.	1.6	19
69	Significant differences in terms of codon usage bias between bacteriophage early and late genes: a comparative genomics analysis. BMC Genomics, 2017, 18, 866.	1.2	19
70	Overcoming the expression barrier of the ferredoxin‑hydrogenase chimera in Chlamydomonas reinhardtii supports a linear increment in photosynthetic hydrogen output. Algal Research, 2018, 33, 310-315.	2.4	19
71	Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development. Nucleic Acids Research, 2014, 42, 9761-9770.	6.5	18
72	The RNA Polymerase Flow Model of Gene Transcription. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8, 54-64.	2.7	18

#	Article	IF	CITATIONS
73	Exploiting hidden information interleaved in the redundancy of the genetic code without prior knowledge. Bioinformatics, 2015, 31, 1161-1168.	1.8	18
74	Reconstruction of Ancestral Genomic Sequences Using Likelihood. Journal of Computational Biology, 2007, 14, 216-237.	0.8	17
75	Clone clusters in autoreactive CD4 Tâ€cell lines from probable multiple sclerosis patients form diseaseâ€characteristic signatures. Immunology, 2009, 128, 287-300.	2.0	17
76	Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda. DNA Research, 2017, 24, 333-342.	1.5	17
77	<i>TP53</i> Cancerous Mutations Exhibit Selection for Translation Efficiency. Cancer Research, 2009, 69, 8807-8813.	0.4	16
78	Ribosome flow model with extended objects. Journal of the Royal Society Interface, 2017, 14, 20170128.	1.5	16
79	Novel insights into gene expression regulation during meiosis revealed by translation elongation dynamics. Npj Systems Biology and Applications, 2019, 5, 12.	1.4	16
80	Networks of ribosome flow models for modeling and analyzing intracellular traffic. Scientific Reports, 2019, 9, 1703.	1.6	16
81	Co-evolutionary networks of genes and cellular processes across fungal species. Genome Biology, 2009, 10, R48.	13.9	15
82	RFMapp: ribosome flow model application. Bioinformatics, 2012, 28, 1663-1664.	1.8	15
83	Algorithms for ribosome traffic engineering and their potential in improving host cells' titer and growth rate. Scientific Reports, 2020, 10, 21202.	1.6	15
84	Extensive inter-domain lateral gene transfer in the evolution of the human commensal Methanosphaera stadtmanae. Frontiers in Genetics, 2012, 3, 182.	1.1	14
85	Challenges and obstacles related to solving the codon bias riddles. Biochemical Society Transactions, 2014, 42, 155-159.	1.6	13
86	A deterministic mathematical model for bidirectional excluded flow with Langmuir kinetics. PLoS ONE, 2017, 12, e0182178.	1.1	13
87	Quantifying the distribution of protein oligomerization degree reflects cellular information capacity. Scientific Reports, 2020, 10, 17689.	1.6	13
88	The Integration of Multiple Nuclear-Encoded Transgenes in the Green Alga Chlamydomonas reinhardtii Results in Higher Transcription Levels. Frontiers in Plant Science, 2020, 10, 1784.	1.7	13
89	Biological Networks: Comparison, Conservation, and Evolution via Relative Description Length. Journal of Computational Biology, 2007, 14, 817-838.	0.8	12
90	Maximizing Protein Translation Rate in the Ribosome Flow Model: The Homogeneous Case. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 1184-1195.	1.9	12

#	Article	IF	CITATIONS
91	Computational analysis of the oscillatory behavior at the translation level induced by mRNA levels oscillations due to finite intracellular resources. PLoS Computational Biology, 2018, 14, e1006055.	1.5	12
92	Higher-Order Genomic Organization of Cellular Functions in Yeast. Journal of Computational Biology, 2009, 16, 303-316.	0.8	11
93	Universal evolutionary selection for high dimensional silent patterns of information hidden in the redundancy of viral genetic code. Bioinformatics, 2018, 34, 3241-3248.	1.8	11
94	Controllability Analysis and Control Synthesis for the Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1351-1364.	1.9	11
95	A possible universal role for mRNA secondary structure in bacterial translation revealed using a synthetic operon. Nature Communications, 2020, 11, 4827.	5.8	11
96	Variability in mRNA translation: a random matrix theory approach. Scientific Reports, 2021, 11, 5300.	1.6	11
97	Inferring horizontal transfers in the presence of rearrangements by the minimum evolution criterionâ€. Bioinformatics, 2008, 24, 826-832.	1.8	10
98	The Effect of Dysregulation of tRNA Genes and Translation Efficiency Mutations in Cancer and Neurodegeneration. Frontiers in Genetics, 2012, 3, 201.	1.1	10
99	Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints. PLoS Computational Biology, 2015, 11, e1004298.	1.5	10
100	Evidence of a Direct Evolutionary Selection for Strong Folding and Mutational Robustness Within HIV Coding Regions. Journal of Computational Biology, 2016, 23, 641-650.	0.8	10
101	Modeling three-dimensional genomic organization in evolution and pathogenesis. Seminars in Cell and Developmental Biology, 2019, 90, 78-93.	2.3	10
102	Solving the Riddle of the Evolution of Shine-Dalgarno Based Translation in Chloroplasts. Molecular Biology and Evolution, 2019, 36, 2854-2860.	3.5	10
103	Whole cell biophysical modeling of codon-tRNA competition reveals novel insights related to translation dynamics. PLoS Computational Biology, 2020, 16, e1008038.	1.5	10
104	Estimating the predictive power of silent mutations on cancer classification and prognosis. Npj Genomic Medicine, 2021, 6, 67.	1.7	10
105	Checkable Conditions for Contraction After Small Transients in Time and Amplitude. Lecture Notes in Control and Information Sciences, 2017, , 279-305.	0.6	10
106	Mapping the translation initiation landscape of an S. cerevisiae gene using fluorescent proteins. Genomics, 2013, 102, 419-429.	1.3	9
107	Selection for reduced translation costs at the intronic 5′ end in fungi. DNA Research, 2016, 23, 377-394.	1.5	9
108	Prediction and large-scale analysis of primary operons in plastids reveals unique genetic features in the evolution of chloroplasts. Nucleic Acids Research, 2019, 47, 3344-3352.	6.5	9

#	Article	IF	CITATIONS
109	The COP9 signalosome influences the epigenetic landscape of <i>Arabidopsis thaliana</i> . Bioinformatics, 2019, 35, 2718-2723.	1.8	9
110	Discovering local patterns of co - evolution: computational aspects and biological examples. BMC Bioinformatics, 2010, 11, 43.	1.2	8
111	ChimeraUGEM: unsupervised gene expression modeling in any given organism. Bioinformatics, 2019, 35, 3365-3371.	1.8	8
112	MPEPE, a predictive approach to improve protein expression in E. coli based on deep learning. Computational and Structural Biotechnology Journal, 2022, 20, 1142-1153.	1.9	8
113	Ribosomal mutations affecting the translation of genes that use nonâ€optimal codons. FEBS Journal, 2014, 281, 3701-3718.	2.2	7
114	Tracking the evolution of 3D gene organization demonstrates its connection to phenotypic divergence. Nucleic Acids Research, 2017, 45, 4330-4343.	6.5	7
115	Identification of conserved slow codons that are important for protein expression and function. RNA Biology, 2021, 18, 2296-2307.	1.5	7
116	A New Linear-Time Heuristic Algorithm for Computing the Parsimony Score of Phylogenetic Networks: Theoretical Bounds and Empirical Performance. , 2007, , 61-72.		7
117	Evolutionary Stability Optimizer (ESO): A Novel Approach to Identify and Avoid Mutational Hotspots in DNA Sequences While Maintaining High Expression Levels. ACS Synthetic Biology, 2022, 11, 1142-1151.	1.9	7
118	Image-Processing Software for High-Throughput Quantification of Colony Luminescence. MSphere, 2019, 4, .	1.3	6
119	CSO – A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. Algal Research, 2020, 46, 101788.	2.4	6
120	Analysis of Coevolving Gene Families Using Mutually Exclusive Orthologous Modules. Genome Biology and Evolution, 2011, 3, 413-423.	1.1	5
121	Modeling and Analyzing the Flow of Molecular Machines in Gene Expression. RNA Technologies, 2018, , 275-300.	0.2	5
122	Prediction of the Wingate anaerobic mechanical power outputs from a maximal incremental cardiopulmonary exercise stress test using machine-learning approach. PLoS ONE, 2019, 14, e0212199.	1.1	5
123	Prokaryotic rRNA-mRNA interactions are involved in all translation steps and shape bacterial transcripts. RNA Biology, 2021, 18, 684-698.	1.5	5
124	Co-evolution Is Incompatible with the Markov Assumption in Phylogenetics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1667-1670.	1.9	4
125	Efficient algorithms for reconstructing gene content by co-evolution. BMC Bioinformatics, 2011, 12, S12.	1.2	4
126	Most associations between transcript features and gene expression are monotonic. Molecular BioSystems, 2014, 10, 1426-1440.	2.9	4

#	Article	IF	CITATIONS
127	Three-dimensional Genomic Organization of Genes' Function in Eukaryotes. , 2016, , 233-252.		4
128	Genome-Scale Analysis of Perturbations in Translation Elongation Based on a Computational Model. Scientific Reports, 2018, 8, 16191.	1.6	4
129	Evolutionary selection against short nucleotide sequences in viruses and their related hosts. DNA Research, 2020, 27, .	1.5	4
130	New computational model for miRNA-mediated repression reveals novel regulatory roles of miRNA bindings inside the coding region. Bioinformatics, 2021, 36, 5398-5404.	1.8	4
131	A Mathematical Analysis of RNA Structural Motifs in Viruses. Mathematics, 2021, 9, 585.	1.1	4
132	THE NET-HMM APPROACH: PHYLOGENETIC NETWORK INFERENCE BY COMBINING MAXIMUM LIKELIHOOD AND HIDDEN MARKOV MODELS. Journal of Bioinformatics and Computational Biology, 2009, 07, 625-644.	0.3	3
133	Unsupervised detection of regulatory gene expression information in different genomic regions enables gene expression ranking. BMC Bioinformatics, 2017, 18, 77.	1.2	3
134	The Effect of Codon Usage on the Success of Horizontal Gene Transfer. , 2013, , 147-158.		3
135	Exploring Potential Signals of Selection for Disordered Residues in Prokaryotic and Eukaryotic Proteins. Genomics, Proteomics and Bioinformatics, 2020, 18, 549-564.	3.0	3
136	Reconstructing Ancestral Genomic Sequences by Co-Evolution: Formal Definitions, Computational Issues, and Biological Examples. Journal of Computational Biology, 2010, 17, 1327-1344.	0.8	2
137	sbv IMPROVER Diagnostic Signature Challenge. Systems Biomedicine (Austin, Tex), 2013, 1, 208-216.	0.7	2
138	A Mathematical Analysis of HDV Genotypes: From Molecules to Cells. Mathematics, 2021, 9, 2063.	1.1	2
139	Discovering Local Patterns of Co-evolution. Lecture Notes in Computer Science, 2008, , 55-71.	1.0	2
140	Modeling the ribosomal small subunit dynamic in Saccharomyces cerevisiae based on TCP-seq data. Nucleic Acids Research, 2022, , .	6.5	2
141	Controlling the ribosomal density profile in mRNA translation. , 2016, , .		1
142	Generation and comparative genomics of synthetic dengue viruses. BMC Bioinformatics, 2018, 19, 140.	1.2	1
143	CSN: unsupervised approach for inferring biological networks based on the genome alone. BMC Bioinformatics, 2020, 21, 190.	1.2	1
144	Computational based design and tracking of synthetic variants of Porcine circovirus reveal relations between silent genomic information and viral fitness. Scientific Reports, 2021, 11, 10620.	1.6	1

#	Article	IF	CITATIONS
145	A Ribosome Flow Model for Analyzing Translation Elongation. Lecture Notes in Computer Science, 2011, , 358-360.	1.0	1
146	Computational discovery and modeling of novel gene expression rules encoded in the mRNA. Biochemical Society Transactions, 2020, 48, 1519-1528.	1.6	1
147	Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples. Lecture Notes in Computer Science, 2009, , 164-180.	1.0	1
148	Novel Driver Synonymous Mutations in the Coding Regions of GCB Lymphoma Patients Improve the Transcription Levels of BCL2. Lecture Notes in Computer Science, 2020, , 108-118.	1.0	1
149	Accelerating Whole-Cell Simulations of mRNA Translation Using a Dedicated Hardware. ACS Synthetic Biology, 2021, , .	1.9	1
150	Modeling the effect of rRNA-mRNA interactions and mRNA folding on mRNA translation in chloroplasts. Computational and Structural Biotechnology Journal, 2022, 20, 2521-2538.	1.9	1
151	Editing Bayesian Networks: A New Approach for Combining Prior Knowledge and Gene Expression Measurements for Researching Diseases. , 2008, , .		0
152	Computational Modeling of Gene Translation and its Potential Applications in Individualized Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 487-503.	0.7	0
153	Flow models for efficient simulation and engineering of transcription and translation elongation. , 2012, , .		0
154	Coevolution of Gene Families: Models, Algorithms, and Systems Biology. , 2012, , 65-78.		0
155	Hidden Silent Codes in Viral Genomes. , 2017, , 87-110.		0
156	Inferring Models of Rearrangements, Recombinations, and Horizontal Transfers by the Minimum Evolution Criterion. Lecture Notes in Computer Science, 2007, , 111-123.	1.0	0
157	Novel Phylogenetic Network Inference by Combining Maximum Likelihood and Hidden Markov Models. Lecture Notes in Computer Science, 2008, , 354-368.	1.0	0
158	Generation and Comparative Genomics of Synthetic Dengue Viruses. Lecture Notes in Computer Science, 2017, , 31-52.	1.0	0
159	Temporal mRNA Translation Efficiency Is Encoded In Viral Coding RegionsÂ. , 2017, , .		0
160	Determinants of efficient modulation of ribosomal traffic jams. Computational and Structural Biotechnology Journal, 2021, 19, 6064-6079.	1.9	0