
Takashi Iida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9189522/publications.pdf Version: 2024-02-01

Τλκλεμι Ιισλ

#	Article	IF	CITATIONS
1	Bile acid biosynthesis in Smith-Lemli-Opitz syndrome bypassing cholesterol: Potential importance of pathway intermediates. Journal of Steroid Biochemistry and Molecular Biology, 2021, 206, 105794.	2.5	12
2	Bile Acid Synthesis Disorders in Japan: Long-Term Outcome and Chenodeoxycholic Acid Treatment. Digestive Diseases and Sciences, 2021, 66, 3885-3892.	2.3	8
3	Human-specific dual regulations of FXR-activation for reduction of fatty liver using <i>in vitro</i> cell culture model. Journal of Clinical Biochemistry and Nutrition, 2019, 64, 112-123.	1.4	9
4	Solvent-Free Synthesis of 2-Alkylbenzothiazoles and Bile Acid Derivatives Containing Benzothiazole Ring by Using Active Carbon/Silica Gel and Microwave. Journal of Oleo Science, 2018, 67, 1209-1217.	1.4	5
5	Transition of Urinary Ursodeoxycholic Acid 7β-N-acetylglucosaminide and 3α-sulfate from Neonates to Adolescents Using LC/ESI-MS/MS Analysis. The Showa University Journal of Medical Sciences, 2017, 29, 391-402.	0.1	1
6	Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition. Clinical and Translational Gastroenterology, 2016, 7, e187.	2.5	75
7	Two Major Bile Acids in the Hornbills, (24 <i>R</i> ,25 <i>S</i>)â€3α,7α,24â€Trihydroxyâ€5βâ€cholestanâ€27â€ and Its 12αâ€Hydroxy Derivative. Lipids, 2016, 51, 757-768.	oyl Taurin 1.7	e 1
8	Bile Acids Protect Expanding Hematopoietic Stem Cells from Unfolded Protein Stress in Fetal Liver. Cell Stem Cell, 2016, 18, 522-532.	11.1	81
9	Novel, major 2α- and 2β-hydroxy bile alcohols and bile acids in the bile of Arapaima gigas, a large South American river fish. Steroids, 2016, 107, 112-120.	1.8	0
10	Focused metabolomics using liquid chromatography/electrospray ionization tandem mass spectrometry for analysis of urinary conjugated cholesterol metabolites from patients with Niemann–Pick disease type C and 3β-hydroxysteroid dehydrogenase deficiency. Annals of Clinical Biochemistry, 2015, 52, 576-587.	1.6	22
11	Bile Acids Protect Expanding Hematopoietic Stem Cells from Unfolded Protein Stress in Fetal Liver. Blood, 2015, 126, 897-897.	1.4	0
12	Tandem mass spectrometric characterization of bile acids and steroid conjugates based on low-energy collision-induced dissociation. Steroids, 2014, 80, 80-91.	1.8	39
13	Origin of myofibroblasts in the fibrotic liver in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3297-305.	7.1	414
14	Regioselective dehydrogenation of 3-keto-steroids to form conjugated enones using o-iodoxybenzoic acid and trifluoroacetic acid catalysis. Chemistry and Physics of Lipids, 2014, 178, 45-51.	3.2	11
15	Simultaneous determination of 18 tetrahydrocorticosteroid sulfates in human urine by liquid chromatography/electrospray ionization-tandem mass spectrometry. Steroids, 2014, 85, 18-29.	1.8	12
16	N-Methyltaurine N-acyl amidated bile acids and deoxycholic acid in the bile of angelfish (Pomacanthidae): A novel bile acid profile in Perciform fish. Steroids, 2014, 80, 15-23.	1.8	6
17	LC/ESI-MS/MS analysis of urinary 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its amides: New biomarkers for the detection of Niemann–Pick type C disease. Steroids, 2013, 78, 967-972.	1.8	53
18	Chemical synthesis of the 17-propanamide derivatives of stereoisomeric Δ14-17α- and 17β-estradiols: potential 17β-hydroxysteroid dehydrogenase inhibitors. Chemistry and Physics of Lipids, 2011, 164, 106-112.	3.2	2

Τακάςηι lida

#	Article	IF	CITATIONS
19	Human Multidrug Resistance Protein 2 (MRP2/ABCC2) transports 3α, 6α, 7α, 12αâ€(OH) 4 â€5βâ€cholyl tauri (6αâ€OHâ€TC). FASEB Journal, 2009, 23, 747.2.	ne 0.5	0
20	Regioselective Oxyfunctionalization of Unactivated Carbons in Steroids by a Model of Cytochrome P-450:Â Osmiumporphyrin Complex/tert-Butyl Hydroperoxide System. Journal of Organic Chemistry, 2007, 72, 823-830.	3.2	36
21	Osmiumporphyrin-Catalyzed Oxyfunctionalization and Isomerization of Natural (5β)-Bile Acids withtert-Butyl Hydroperoxide. European Journal of Organic Chemistry, 2007, 2007, 3555-3563.	2.4	19
22	Chemical synthesis of the 3-sulfooxy-7-N-acetylglucosaminyl-24-amidated conjugates of 3β,7β-dihydroxy-5-cholen-24-oic acid, and related compounds: Unusual, major metabolites of bile acid in a patient with Niemann-Pick disease type C1. Steroids, 2006, 71, 18-29.	1.8	42
23	Chemical synthesis of 24-β-d-galactopyranosides of bile acids: a new type of bile acid conjugates in human urine. Chemistry and Physics of Lipids, 2005, 134, 141-150.	3.2	10
24	Identification of a novel conjugate in human urine: bile acid acyl galactosides. Steroids, 2005, 70, 185-192.	1.8	29
25	Biomimetic oxidation of unactivated carbons in steroids by a model of cytochrome P-450, oxorutheniumporphyrinate complex. Lipids, 2004, 39, 873-880.	1.7	13
26	Capillary gas chromatographic separation of bile acid acyl glycosides without thermal decomposition and isomerization. Journal of Chromatography A, 2004, 1057, 171-176.	3.7	5
27	Functionalization of unactivated carbons in 3α,6- and 3α,24-dihydroxy-5β-cholane derivatives by dimethyldioxirane. Lipids, 2003, 38, 281-287.	1.7	9
28	1H and13C NMR signal assignments of carboxyl-linked glucosides of bile acids. Magnetic Resonance in Chemistry, 2003, 41, 260-264.	1.9	6
29	An Improved Method for the Capillary Gas Chromatographic Derivatization of Polyhydroxylated Steroids Having tert-Hydroxyl Groups. Analytical Sciences, 2003, 19, 1317-1321.	1.6	1
30	Potential bile acid metabolites. 24. An efficient synthesis of carboxyl-linked glucosides and their chemical properties. Lipids, 2002, 37, 101-110.	1.7	16
31	A highly efficient, stereoselective oxyfunctionalization of unactivated carbons in steroids with dimethyldioxiraneâ€. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2229-2236.	1.3	25
32	Structural Aspects of Bile Acids Involved in the Regulation of Cholesterol 7alpha-Hydroxylase and Sterol 27-Hydroxylase. FEBS Journal, 1995, 228, 596-604.	0.2	19
33	NMR Studies on Natural Products. V Journal of Japan Oil Chemists Society, 1978, 27, 390-393.	0.1	1