John G Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9189271/publications.pdf

Version: 2024-02-01

686830 676716 22 555 13 22 h-index citations g-index papers 27 27 27 879 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 2022, 14, 1125-1151.	3.7	33
2	Observations of aerosol–vapor pressure deficit–evaporative fraction coupling over India. Atmospheric Chemistry and Physics, 2022, 22, 3615-3629.	1.9	6
3	The Indian COSMOS Network (ICON): Validating L-Band Remote Sensing and Modelled Soil Moisture Data Products. Remote Sensing, 2021, 13, 537.	1.8	11
4	COSMOS-UK: national soil moisture and hydrometeorology data for environmental science research. Earth System Science Data, 2021, 13, 1737-1757.	3.7	19
5	Using Additional Moderator to Control the Footprint of a COSMOS Rover for Soil Moisture Measurement. Water Resources Research, 2021, 57, e2020WR028478.	1.7	7
6	Detecting Ground Level Enhancements Using Soil Moisture Sensor Networks. Space Weather, 2021, 19, e2021SW002800.	1.3	4
7	Estimation and evaluation of high-resolution soil moisture from merged model and Earth observation data in the Great Britain. Remote Sensing of Environment, 2021, 264, 112610.	4.6	30
8	A Method to Assess the Performance of SAR-Derived Surface Soil Moisture Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4504-4516.	2.3	6
9	Spatial and temporal variability in energy and water vapour fluxes observed at seven sites on the Indian subcontinent during 2017. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2853-2866.	1.0	14
10	Interaction of convective organization with monsoon precipitation, atmosphere, surface and sea: The 2016 INCOMPASS field campaign in India. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2828-2852.	1.0	35
11	Krigingâ€based robotic exploration for soil moisture mapping using a cosmicâ€ray sensor. Journal of Field Robotics, 2020, 37, 122-136.	3.2	14
12	Transpiration from subarctic deciduous woodlands: Environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology, 2020, 13, e2190.	1.1	12
13	Biases in Model-Simulated Surface Energy Fluxes During the Indian Monsoon Onset Period. Boundary-Layer Meteorology, 2019, 170, 323-348.	1.2	12
14	Soil water content in southern England derived from a cosmicâ€ray soil moisture observing system – COSMOSâ€UK. Hydrological Processes, 2016, 30, 4987-4999.	1.1	102
15	Effects of urban density on carbon dioxide exchanges: Observations of dense urban, suburban and woodland areas of southern England. Environmental Pollution, 2015, 198, 186-200.	3.7	84
16	Environmental and Vegetation Drivers of Seasonal CO2 Fluxes in a Sub-arctic Forest–Mire Ecotone. Ecosystems, 2014, 17, 377-393.	1.6	15
17	Multi-Scale Sensible Heat Fluxes in the Suburban Environment from Large-Aperture Scintillometry and Eddy Covariance. Boundary-Layer Meteorology, 2014, 152, 65-89.	1.2	41
18	A critical revision of the estimation of the latent heat flux from twoâ€wavelength scintillometry. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1912-1922.	1.0	23

#	Article	IF	CITATION
19	Upscaling Tundra CO ₂ Exchange from Chamber to Eddy Covariance Tower. Arctic, Antarctic, and Alpine Research, 2013, 45, 275-284.	0.4	22
20	Effects of Non-Uniform Crosswind Fields on Scintillometry Measurements. Boundary-Layer Meteorology, 2011, 141, 143-163.	1.2	10
21	The Effective Height of a Two-Wavelength Scintillometer System. Boundary-Layer Meteorology, 2011, 141, 165-177.	1.2	21
22	Using Information Theory to Determine Optimum Pixel Size and Shape for Ecological Studies: Aggregating Land Surface Characteristics in Arctic Ecosystems. Ecosystems, 2009, 12, 574-589.	1.6	28