Guangwei Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9189074/publications.pdf

Version: 2024-02-01

all docs

			117571	10	06281
78		4,402	34		65
papers	C	itations	h-index		g-index
0.2		0.2	0.2		5882

times ranked

citing authors

docs citations

#	Article	IF	Citations
1	CAMK2/CaMKII activates MLKL in short-term starvation to facilitate autophagic flux. Autophagy, 2022, 18, 726-744.	4.3	25
2	PLD1 promotes reactive oxygen species production in vascular smooth muscle cells and injury-induced neointima formation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159062.	1.2	2
3	Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter, 2021, 17, 288-297.	1.2	66
4	Phospholipid catabolism. , 2021, , 259-280.		1
5	Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance. Cell Biochemistry and Biophysics, 2021, 79, 531-545.	0.9	O
6	Phosphatidic <scp>acidâ€</scp> PKA signaling regulates p38 and <scp>ERK1</scp> /2 functions in ligandâ€independent EGFR endocytosis. Traffic, 2021, 22, 345-361.	1.3	7
7	Illustrating human PLD. Nature Chemical Biology, 2020, 16, 364-365.	3.9	5
8	Phosphatidic acid-dependent localization and basal de-phosphorylation of RA-GEFs regulate lymphocyte trafficking. BMC Biology, 2020, 18, 75.	1.7	6
9	Phosphatidic acid regulates subcellular distribution of RA-GEFs critical for chemokine-dependent migration. Biochemical and Biophysical Research Communications, 2020, 524, 325-331.	1.0	4
10	Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. Journal of Biological Chemistry, 2020, 295, 7669-7685.	1.6	17
11	Novel role of dynaminâ€relatedâ€protein 1 in dynamics of ERâ€lipid droplets in adipose tissue. FASEB Journal, 2020, 34, 8265-8282.	0.2	20
12	Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation. FASEB Journal, 2019, 33, 6713-6725.	0.2	12
13	PLD-dependent phosphatidic acid microdomains are signaling platforms for podosome formation. Scientific Reports, 2019, 9, 3556.	1.6	13
14	Rapid affinity purification of intracellular organelles using twin strep tag. Journal of Cell Science, 2019, 132, .	1.2	34
15	Small molecule metabolite biomarkers for hepatocellular carcinoma with bile duct tumor thrombus diagnosis. Scientific Reports, 2018, 8, 3309.	1.6	15
16	Bile acids target proteolipid nano-assemblies of EGFR and phosphatidic acid in the plasma membrane for stimulation of MAPK signaling. PLoS ONE, 2018, 13, e0198983.	1.1	9
17	Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. Journal of Molecular Cell Biology, 2017, 9, 302-314.	1.5	25
18	The VPS-34 PI3 kinase negatively regulates RAB-5 during endosome maturation. Journal of Cell Science, 2017, 130, 2007-2017.	1.2	40

#	Article	IF	CITATIONS
19	Microbial Genetic Composition Tunes Host Longevity. Cell, 2017, 169, 1249-1262.e13.	13.5	256
20	Lipinâ€1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for tripleâ€negative breast cancer cell survival. FASEB Journal, 2017, 31, 2893-2904.	0.2	44
21	Binding of PLD2-Generated Phosphatidic Acid to KIF5B Promotes MT1-MMP Surface Trafficking and Lung Metastasis of Mouse Breast Cancer Cells. Developmental Cell, 2017, 43, 186-197.e7.	3.1	63
22	Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells. Journal of Biological Chemistry, 2016, 291, 20729-20738.	1.6	30
23	Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury. Scientific Reports, 2016, 6, 36552.	1.6	37
24	Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells. Cell Death and Disease, 2016, 7, e2448-e2448.	2.7	29
25	Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase activating protein Armus. Journal of Cell Science, 2016, 129, 4424-4435.	1.2	59
26	Analysis of Invadopodia Formation in Breast Cancer Cells. Methods in Molecular Biology, 2016, 1406, 203-210.	0.4	11
27	Monitoring Phosphatidic Acid Signaling in Breast Cancer Cells Using Genetically Encoded Biosensors. Methods in Molecular Biology, 2016, 1406, 225-237.	0.4	12
28	Transcriptional coactivator CBP upregulates hTERT expression and tumor growth and predicts poor prognosis in human lung cancers. Oncotarget, 2014, 5, 9349-9361.	0.8	20
29	Drosophila TRPML Forms PI(3,5)P2-activated Cation Channels in Both Endolysosomes and Plasma Membrane. Journal of Biological Chemistry, 2014, 289, 4262-4272.	1.6	62
30	Temporal Production of the Signaling Lipid Phosphatidic Acid by Phospholipase D2 Determines the Output of Extracellular Signal-Regulated Kinase Signaling in Cancer Cells. Molecular and Cellular Biology, 2014, 34, 84-95.	1.1	104
31	CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Oncotarget, 2014, 5, 10840-10853.	0.8	32
32	miRNA and shRNA Expression Vectors Based on mRNA and miRNA Processing. Methods in Molecular Biology, 2013, 936, 195-207.	0.4	4
33	Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Molecular Biology of the Cell, 2013, 24, 1700-1712.	0.9	90
34	Diacylglycerol Kinases Terminate Diacylglycerol Signaling during the Respiratory Burst Leading to Heterogeneous Phagosomal NADPH Oxidase Activation. Journal of Biological Chemistry, 2013, 288, 23090-23104.	1.6	35
35	Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity. Journal of Clinical Investigation, 2013, 123, 3941-3951.	3.9	57
36	Phosphatidic acid regulation of PIPKI is critical for actin cytoskeletal reorganization. Journal of Lipid Research, 2012, 53, 2598-2609.	2.0	43

#	Article	IF	CITATIONS
37	Therapeutic Levels of the Hydroxmethylglutaryl-Coenzyme A Reductase Inhibitor Lovastatin Activate Ras Signaling via Phospholipase D2. Molecular and Cellular Biology, 2011, 31, 1110-1120.	1.1	36
38	Class III PI-3-kinase activates phospholipase D in an amino acid–sensing mTORC1 pathway. Journal of Cell Biology, 2011, 195, 435-447.	2.3	146
39	Basis for the Isoform-specific Interaction of Myosin Phosphatase Subunits Protein Phosphatase $1c\ \hat{l}^2$ and Myosin Phosphatase Targeting Subunit 1. Journal of Biological Chemistry, 2010, 285, 6419-6424.	1.6	35
40	Epidermal Growth Factor Receptor Activation Remodels the Plasma Membrane Lipid Environment To Induce Nanocluster Formation. Molecular and Cellular Biology, 2010, 30, 3795-3804.	1.1	87
41	Dependence of Phospholipase D1 Multi-monoubiquitination on Its Enzymatic Activity and Palmitoylation. Journal of Biological Chemistry, 2010, 285, 13580-13588.	1.6	29
42	Phospholipase D2-Dependent Inhibition of the Nuclear Hormone Receptor PPARÎ ³ by Cyclic Phosphatidic Acid. Molecular Cell, 2010, 39, 421-432.	4.5	117
43	5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a Phospholipase D Pharmacological Inhibitor That Alters Cell Spreading and Inhibits Chemotaxis. Molecular Pharmacology, 2009, 75, 437-446.	1.0	233
44	Increased lipogenesis in cancer. Communicative and Integrative Biology, 2009, 2, 545-548.	0.6	3
45	Phospholipase D1 Regulates Lymphocyte Adhesion via Upregulation of Rap1 at the Plasma Membrane. Molecular and Cellular Biology, 2009, 29, 3297-3306.	1.1	38
46	A Lipid-signaled Myosin Phosphatase Surge Disperses Cortical Contractile Force Early in Cell Spreading. Molecular Biology of the Cell, 2009, 20, 200-208.	0.9	34
47	Phosphatidic acid signaling regulation of Ras superfamily of small guanosine triphosphatases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 850-855.	1.2	76
48	pSM155 and pSM30 Vectors for miRNA and shRNA Expression. Methods in Molecular Biology, 2009, 487, 1-15.	0.4	8
49	Phospholipase D1 Production of Phosphatidic Acid at the Plasma Membrane Promotes Exocytosis of Large Dense-core Granules at a Late Stage. Journal of Biological Chemistry, 2007, 282, 21746-21757.	1.6	185
50	Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nature Cell Biology, 2007, 9, 707-712.	4.6	283
51	The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nature Cell Biology, 2007, 9, 713-719.	4.6	143
52	A role for Phospholipase D in Drosophila embryonic cellularization. BMC Developmental Biology, 2006, 6, 60.	2.1	32
53	Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS Journal, 2006, 273, 5421-5427.	2.2	93
54	Dynamics and Function of Phospholipase D and Phosphatidic Acid During Phagocytosis. Traffic, 2006, 7, 365-377.	1.3	123

#	Article	IF	CITATIONS
55	Amplification of 5′ end cDNA with 'new RACE'. Nature Protocols, 2006, 1, 3056-3061.	5. 5	48
56	5′ end cDNA amplification using classic RACE. Nature Protocols, 2006, 1, 2555-2562.	5.5	206
57	3′ End cDNA amplification using classic RACE. Nature Protocols, 2006, 1, 2742-2745.	5.5	213
58	RhoA-mediated Phospholipase D1 signaling is not required for the formation of stress fibers and focal adhesions. Cellular Signalling, 2006, 18, 469-478.	1.7	20
59	Role of Phospholipase D in Actin Cytoskeletal Reorganization of Epithelium Cells. FASEB Journal, 2006, 20, A1373.	0.2	0
60	Peroxiredoxin II functions as a signal terminator for H2O2-activated phospholipase D1. FEBS Journal, 2005, 272, 3929-3937.	2.2	21
61	Phospholipase D2 Localizes to the Plasma Membrane and Regulates Angiotensin II Receptor Endocytosis. Molecular Biology of the Cell, 2004, 15, 1024-1030.	0.9	194
62	Calphostin-C Induction of Vascular Smooth Muscle Cell Apoptosis Proceeds through Phospholipase D and Microtubule Inhibition. Journal of Biological Chemistry, 2004, 279, 7112-7118.	1.6	24
63	Increased expression of two phospholipase D isoforms during experimentally induced hippocampal mossy fiber outgrowth. Glia, 2004, 46, 74-83.	2.5	37
64	PLD1 Regulates mTOR Signaling and Mediates Cdc42 Activation of S6K1. Current Biology, 2003, 13, 2037-2044.	1.8	156
65	Ca2+ - and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Letters, 2003, 550, 51-56.	1.3	32
66	Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. Journal of Cell Biology, 2003, 162, 305-315.	2.3	154
67	G-Protein-Coupled Receptor Regulation of Phospholipase D. Methods in Enzymology, 2002, 345, 265-274.	0.4	13
68	ASH2L: alternative splicing and downregulation during induced megakaryocytic differentiation of multipotential leukemia cell lines. Journal of Molecular Medicine, 2001, 79, 399-405.	1.7	19
69	Insulin-induced phospholipase D1 and phospholipase D2 activity in human embryonic kidney-293 cells mediated by the phospholipase \hat{Cl}^3 and protein kinase \hat{Cl}^4 signalling cascade. Biochemical Journal, 2000, 351, 613.	1.7	15
70	Insulin-induced phospholipase D1 and phospholipase D2 activity in human embryonic kidney-293 cells mediated by the phospholipase \hat{Cl}^3 and protein kinase \hat{Cl}^2 signalling cascade. Biochemical Journal, 2000, 351, 613-619.	1.7	38
71	Cloning and expression analysis of MBLL cDNA. Science Bulletin, 2000, 45, 620-625.	1.7	0
72	Cloning of human and mouseGRY-RBP cDNA. Science Bulletin, 2000, 45, 343-350.	1.7	0

#	Article	IF	CITATION
73	Cardiac Phospholipase D2 Localizes to Sarcolemmal Membranes and Is Inhibited by α-Actinin in an ADP-ribosylation Factor-reversible Manner. Journal of Biological Chemistry, 2000, 275, 21295-21301.	1.6	112
74	Dual Requirement for Rho and Protein Kinase C in Direct Activation of Phospholipase D1 Through G Protein-coupled Receptor Signaling. Molecular Biology of the Cell, 2000, 11, 4359-4368.	0.9	108
75	Cloning of a novel gene encoding human thioredoxin-like protein. Science Bulletin, 1999, 44, 1673-1676.	1.7	O
76	Cloning and identification of PHF2 cDNA and its alternatively spliced transcripts. Science Bulletin, 1999, 44, 1382-1387.	1.7	0
77	Isolation and cloning of a novel cDNALDB1 encoding human LIM domain binding protein. Science Bulletin, 1999, 44, 1114-1119.	1.7	O
78	Isolation and expression pattern analysis of novel ESTs from human fetal brain. Science Bulletin, 1998, 43, 1815-1819.	1.7	2