Zhancheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9188969/publications.pdf Version: 2024-02-01

7HANCHENC LI

#	Article	IF	CITATIONS
1	Deep-learning-based colorimetric polarization-angle detection with metasurfaces. Optica, 2022, 9, 217.	4.8	22
2	Inverse Design of Few-Layer Metasurfaces Empowered by the Matrix Theory of Multilayer Optics. Physical Review Applied, 2022, 17, .	1.5	7
3	Flexible Confinement and Manipulation of Mie Resonances via Nano Rectangular Hollow Metasurfaces. Advanced Optical Materials, 2022, 10, .	3.6	7
4	Deepâ€Learning Enabled Multicolor Metaâ€Holography. Advanced Optical Materials, 2022, 10, .	3.6	9
5	Few-layer metasurfaces with engineered structural symmetry. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	3
6	Multi-band on-chip photonic spin Hall effect and selective excitation of whispering gallery modes with metasurface-integrated microcavity. Optics Letters, 2021, 46, 3528.	1.7	6
7	Highâ€Performance Transmission Structural Colors Generated by Hybrid Metalâ€Dielectric Metasurfaces. Advanced Optical Materials, 2021, 9, 2100895.	3.6	20
8	Multiband quasibound states in the continuum engineered by space-group-invariant metasurfaces. Physical Review B, 2021, 104, .	1.1	25
9	Tunable dual-band and high-quality-factor perfect absorption based on VO ₂ -assisted metasurfaces. Optics Express, 2021, 29, 31488.	1.7	13
10	Electromagnetic wave manipulation based on few-layer metasurfaces and polyatomic metasurfaces. ChemPhysMater, 2021, 1, 6-6.	1.4	8
11	Full Complexâ€Amplitude Modulation of Second Harmonic Generation with Nonlinear Metasurfaces. Laser and Photonics Reviews, 2021, 15, 2100207.	4.4	18
12	Metasurfaceâ€Empowered Optical Multiplexing and Multifunction. Advanced Materials, 2020, 32, e1805912.	11.1	169
13	Rapid Bending Origami in Micro/Nanoscale toward a Versatile 3D Metasurface. Laser and Photonics Reviews, 2020, 14, 1900179.	4.4	12
14	Giant Intrinsic Chirality in Curled Metasurfaces. ACS Photonics, 2020, 7, 3415-3422.	3.2	30
15	Optical Metasurfaces for Generation and Superposition of Optical Ring Vortex Beams. Laser and Photonics Reviews, 2020, 14, 2000146.	4.4	41
16	Vortical Reflection and Spiraling Fermi Arcs with Weyl Metamaterials. Physical Review Letters, 2020, 125, 093904.	2.9	26
17	Dielectric Resonance-Based Optical Metasurfaces: From Fundamentals to Applications. IScience, 2020, 23, 101868.	1.9	37
18	Spinâ€Selective Fullâ€Dimensional Manipulation of Optical Waves with Chiral Mirror. Advanced Materials, 2020, 32, e1907983.	11.1	52

ZHANCHENG LI

#	Article	IF	CITATIONS
19	Few-layer metasurfaces with arbitrary scattering properties. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	16
20	Metasurfaces: Metasurfaceâ€Empowered Optical Multiplexing and Multifunction (Adv. Mater. 3/2020). Advanced Materials, 2020, 32, 2070022.	11.1	10
21	A Bilayer Plasmonic Metasurface for Polarizationâ€Insensitive Bidirectional Perfect Absorption. Advanced Theory and Simulations, 2020, 3, 1900216.	1.3	12
22	Multiplexed Nondiffracting Nonlinear Metasurfaces. Advanced Functional Materials, 2020, 30, 1910744.	7.8	16
23	Aberration-corrected three-dimensional positioning with a single-shot metalens array. Optica, 2020, 7, 1706.	4.8	43
24	Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization. Applied Physics Letters, 2019, 114, .	1.5	5
25	Optical Information Multiplexing with Nonlinear Coding Metasurfaces. Laser and Photonics Reviews, 2019, 13, 1900045.	4.4	41
26	Energyâ€Tailorable Spinâ€Selective Multifunctional Metasurfaces with Full Fourier Components. Advanced Materials, 2019, 31, e1901729.	11.1	69
27	Arbitrary Manipulation of Light Intensity by Bilayer Aluminum Metasurfaces. Advanced Optical Materials, 2019, 7, 1900260.	3.6	26
28	Metasurfaces: From Singleâ€Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces (Adv. Mater. 16/2019). Advanced Materials, 2019, 31, 1970118.	11.1	4
29	From Singleâ€Đimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces. Advanced Materials, 2019, 31, e1802458.	11.1	127
30	Ultrahighly Saturated Structural Colors Enhanced by Multipolar-Modulated Metasurfaces. Nano Letters, 2019, 19, 4221-4228.	4.5	146
31	Spinâ€Selective and Wavelengthâ€Selective Demultiplexing Based on Waveguideâ€Integrated Allâ€Dielectric Metasurfaces. Advanced Optical Materials, 2019, 7, 1801273.	3.6	36
32	Giant spin-selective asymmetric transmission in multipolar-modulated metasurfaces. Optics Letters, 2019, 44, 3805.	1.7	32
33	Metasurface Enabled Wideâ€Angle Fourier Lens. Advanced Materials, 2018, 30, e1706368.	11.1	112
34	Dynamically Tunable Deep Subwavelength Highâ€Order Anomalous Reflection Using Graphene Metasurfaces. Advanced Optical Materials, 2018, 6, 1701047.	3.6	42
35	Polarization‣ensitive Structural Colors with Hueâ€andâ€5aturation Tuning Based on Allâ€Dielectric Nanopixels. Advanced Optical Materials, 2018, 6, 1701009	3.6	95

 $_{36}$ Nonlinear Metasurfaces: Tripling the Capacity of Optical Vortices by Nonlinear Metasurface (Laser) Tj ETQq0 0 0 rg $_{4.4}^{\text{PT}}$ /Overlock 10 Tf 50

ZHANCHENG LI

#	Article	IF	CITATIONS
37	Tripling the Capacity of Optical Vortices by Nonlinear Metasurface. Laser and Photonics Reviews, 2018, 12, 1800164.	4.4	44
38	High-quality-factor multiple Fano resonances for refractive index sensing. Optics Letters, 2018, 43, 1842.	1.7	170
39	Highâ€Qualityâ€Factor Midâ€Infrared Toroidal Excitation in Folded 3D Metamaterials. Advanced Materials, 2017, 29, 1606298.	11.1	117
40	Metamaterials: Highâ€Qualityâ€Factor Midâ€Infrared Toroidal Excitation in Folded 3D Metamaterials (Adv.) Tj E	TQq000	rgBT /Overlocl
41	Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces. Applied Physics Letters, 2017, 110, .	1.5	49
42	Manipulation of the Photonic Spin Hall Effect with High Efficiency in Goldâ€Nanorodâ€Based Metasurfaces. Advanced Optical Materials, 2017, 5, 1700413.	3.6	37
43	Ultrathin polarization-insensitive wide-angle broadband near-perfect absorber in the visible regime based on few-layer MoS2 films. Applied Physics Letters, 2017, 111, 111109.	1.5	27
44	Spin-Selective Transmission and Devisable Chirality in Two-Layer Metasurfaces. Scientific Reports, 2017, 7, 8204.	1.6	42
45	Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle. ACS Photonics, 2017, 4, 2061-2069.	3.2	48
46	Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation. Optics Letters, 2017, 42, 3117.	1.7	34
47	Momentum Analysis for Metasurfaces. Physical Review Applied, 2017, 8, .	1.5	16
48	Controllable optical activity with non-chiral plasmonic metasurfaces. Light: Science and Applications, 2016, 5, e16096-e16096.	7.7	70
49	Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface. Scientific Reports, 2016, 6, 35485.	1.6	45
50	Highâ€Efficiency Mutual Dualâ€Band Asymmetric Transmission of Circularly Polarized Waves with Few‣ayer Anisotropic Metasurfaces. Advanced Optical Materials, 2016, 4, 2028-2034.	3.6	86
51	Optical Polarization Encoding Using Grapheneâ€Loaded Plasmonic Metasurfaces. Advanced Optical Materials, 2016, 4, 91-98.	3.6	100
52	Polarization: Optical Polarization Encoding Using Graphene‣oaded Plasmonic Metasurfaces (Advanced Optical Materials 1/2016). Advanced Optical Materials, 2016, 4, 2-2.	3.6	0
53	Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces. Optics Letters, 2016, 41, 3142.	1.7	86
54	Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface. Scientific Reports, 2016, 5, 18106.	1.6	128

ZHANCHENG LI

#	Article	IF	CITATIONS
55	Interferometric Control of Signal Light Intensity by Anomalous Refraction with Plasmonic Metasurface. Plasmonics, 2016, 11, 353-358.	1.8	5
56	Refraction: Dynamically Tunable Broadband Infrared Anomalous Refraction Based on Graphene Metasurfaces (Advanced Optical Materials 12/2015). Advanced Optical Materials, 2015, 3, 1743-1743.	3.6	4
57	Highâ€Performance Broadband Circularly Polarized Beam Deflector by Mirror Effect of Multinanorod Metasurfaces. Advanced Functional Materials, 2015, 25, 5428-5434.	7.8	69
58	Dynamically Tunable Broadband Infrared Anomalous Refraction Based on Graphene Metasurfaces. Advanced Optical Materials, 2015, 3, 1744-1749.	3.6	108
59	Beam Deflectors: Highâ€Performance Broadband Circularly Polarized Beam Deflector by Mirror Effect of Multinanorod Metasurfaces (Adv. Funct. Mater. 34/2015). Advanced Functional Materials, 2015, 25, 5567-5567.	7.8	0
60	High Performance Broadband Asymmetric Polarization Conversion Due to Polarization-dependent Reflection. Plasmonics, 2015, 10, 1703-1711.	1.8	31
61	Dynamically Tunable Plasmonic Lens between the Near and Far Fields Based on Composite Nanorings Illuminated with Radially Polarized Light. Plasmonics, 2015, 10, 625-631.	1.8	8
62	Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Optics Letters, 2015, 40, 3229.	1.7	82
63	Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Optics Letters, 2015, 40, 3185.	1.7	212
64	Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces. Optics Letters, 2014, 39, 6763.	1.7	19
65	Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime. Journal of Optics (United Kingdom), 2014, 16, 125107.	1.0	63
66	Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial. Applied Physics Letters, 2014, 105, .	1.5	54
67	Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Applied Physics Letters, 2013, 103, .	1.5	152
68	Co-enhancing and -confining the electric and magnetic fields of the broken-nanoring and the composite nanoring by azimuthally polarized excitation. Optics Express, 2013, 21, 20611.	1.7	15
69	Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial. Optics Letters, 2013, 38, 483.	1.7	61
70	Polarization State Manipulation of Electromagnetic Waves with Metamaterials and Its Applications in Nanophotonics. , 0, , .		4