Manoj Panayamthatta Rayaroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9188432/publications.pdf

Version: 2024-02-01

22 914 papers citations

686830 676716 22
h-index g-index

22 22 all docs citations

22 times ranked 851 citing authors

#	Article	IF	Citations
1	Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review. Chemical Engineering Journal, 2022, 430, 133002.	6.6	237
2	Degradation of pharmaceuticals by ultrasound-based advanced oxidation process. Environmental Chemistry Letters, 2016, 14, 259-290.	8.3	123
3	Oxidative degradation of benzoic acid using Fe O - and sulfidized Fe O -activated persulfate: A comparative study. Chemical Engineering Journal, 2017, 315, 426-436.	6.6	111
4	Sonochemical degradation of Coomassie Brilliant Blue: Effect of frequency, power density, pH and various additives. Chemosphere, 2015, 119, 848-855.	4.2	71
5	Influence of inorganic ions and selected emerging contaminants on the degradation of Methylparaben: A sonochemical approach. Journal of Hazardous Materials, 2015, 300, 202-209.	6. 5	68
6	Degradation of carbamazepine by singlet oxygen from sulfidized nanoscale zero-valent iron – citric acid system. Chemical Engineering Journal, 2020, 382, 122828.	6.6	48
7	Effect of inorganic ions on the ultrasound initiated degradation and product formation of triphenylmethane dyes. Ultrasonics Sonochemistry, 2018, 48, 482-491.	3.8	46
8	In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron–persulfate system: Insights from a box-type study. Chemosphere, 2020, 257, 127117.	4.2	31
9	Ultrasound based AOP for emerging pollutants: from degradation to mechanism. Environmental Science and Pollution Research, 2017, 24, 6261-6269.	2.7	28
10	Thermally activated persulfate-based Advanced Oxidation Processes â€" recent progress and challenges in mineralization of persistent organic chemicals: a review. Current Opinion in Chemical Engineering, 2022, 37, 100839.	3.8	25
11	Role of in-situ nitrite ion formation on the sonochemical transformation of para-aminosalicylic acid. Ultrasonics Sonochemistry, 2018, 40, 213-220.	3.8	18
12	Identification of Chlorophene in a Backwater Stream in Kerala (India) and its Sonochemical Degradation Studies. Clean - Soil, Air, Water, 2015, 43, 1338-1343.	0.7	17
13	Sonochemical degradation of benzenesulfonic acid in aqueous medium. Chemosphere, 2020, 252, 126485.	4.2	16
14	Carbon-nitride-based micromotor driven by chromate-hydrogen peroxide redox system: Application for removal of sulfamethaxazole. Journal of Colloid and Interface Science, 2021, 597, 94-103.	5.0	13
15	Identification of surfactants and its correlation with physicochemical parameters at the confluence region of Vembanad Lake in India. Environmental Science and Pollution Research, 2018, 25, 20527-20539.	2.7	11
16	Occurrence, distribution and removal of organic micro-pollutants in a low saline water body. Science of the Total Environment, 2020, 749, 141319.	3.9	10
17	Alcohol ethoxysulfates (AES) in environmental matrices. Environmental Science and Pollution Research, 2021, 28, 34167-34186.	2.7	9
18	Photocatalytic degradation of lignocaine in aqueous suspension of TiO 2 nanoparticles: Mechanism of degradation and mineralization. Journal of Environmental Chemical Engineering, 2018, 6, 3556-3564.	3.3	8

#	Article	lF	CITATIONS
19	Insights into the Mechanism of Hydroxyl Radical Mediated Oxidations of 2-Aminopurine: A Computational and Sonochemical Product Analysis Study. Journal of Physical Chemistry B, 2020, 124, 6245-6256.	1.2	8
20	Simultaneous removal of heavy metals and dyes in water using a MgO-coated Fe3O4 nanocomposite: Role of micro-mixing effect induced by bubble generation. Chemosphere, 2022, 294, 133788.	4.2	7
21	Acetaminophen removal using green synthesized iron nanoparticles with a fresh water microalga, Planktochlorella nurekis. Nano Structures Nano Objects, 2021, 26, 100700.	1.9	6
22	Degradation studies of halogenated flame retardants. Comprehensive Analytical Chemistry, 2020, 88, 303-339.	0.7	3