Rob Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9188096/publications.pdf

Version: 2024-02-01

69 8,506 44 66
papers citations h-index g-index

71 71 71 3897
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Curiosity Rover's Exploration of Glen Torridon, Gale Crater, Mars: An Overview of the Campaign and Scientific Results. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	27
2	Diurnal Variability in Aeolian Sediment Transport at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	9
3	Orbital and Inâ€Situ Investigation of Periodic Bedrock Ridges in Glen Torridon, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	18
4	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	4.7	47
5	The Aeolian Environment in Glen Torridon, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	14
6	The Physical Properties and Geochemistry of Grains on Aeolian Bedforms at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	9
7	Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager. Space Science Reviews, 2021, 217, 29.	3.7	31
8	Turbulent Shear Flow Over Large Martian Ripples. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006515.	1.5	10
9	Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region. Space Science Reviews, 2021, 217, 20.	3.7	35
10	The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. Space Science Reviews, 2021, 217, 24.	3.7	76
11	Engraved on the rocks—Aeolian abrasion of Martian mudstone exposures and their relationship to modern wind patterns in Gale Crater, Mars. Depositional Record, 2020, 6, 625-647.	0.8	9
12	A Broad Continuum of Aeolian Impact Ripple Morphologies on Mars is Enabled by Low Wind Dynamic Pressures. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006485.	1,5	47
13	Overview of Spirit Microscopic Imager Results. Journal of Geophysical Research E: Planets, 2019, 124, 528-584.	1.5	4
14	Numerical Study of Shear Stress Distribution Over Sand Ripples Under Terrestrial and Martian Conditions. Journal of Geophysical Research E: Planets, 2019, 124, 175-185.	1.5	23
15	Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2019, 46, 71-79.	1.5	138
16	Coarse Sediment Transport in the Modern Martian Environment. Journal of Geophysical Research E: Planets, 2018, 123, 1380-1394.	1.5	44
17	The Bagnold Dunes in Southern Summer: Active Sediment Transport on Mars Observed by the Curiosity Rover. Geophysical Research Letters, 2018, 45, 8853-8863.	1.5	50
18	Sand Grain Sizes and Shapes in Eolian Bedforms at Gale Crater, Mars. Geophysical Research Letters, 2018, 45, 9471-9479.	1.5	71

#	Article	IF	Citations
19	Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit. Journal of Geophysical Research E: Planets, 2017, 122, 2077-2110.	1.5	77
20	Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. Journal of Geophysical Research E: Planets, 2017, 122, 2510-2543.	1.5	95
21	Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. Icarus, 2017, 291, 203-231.	1.1	119
22	The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions. Earth and Space Science, 2017, 4, 506-539.	1.1	117
23	Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2544-2573.	1.5	83
24	Aeolian saltation on Mars at low wind speeds. Journal of Geophysical Research E: Planets, 2017, 122, 2111-2143.	1.5	90
25	Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid. Advances in Space Research, 2016, 58, 1066-1092.	1.2	12
26	Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater. Journal of Geophysical Research E: Planets, 2015, 120, 538-569.	1.5	37
27	Megaripple. , 2015, , 1346-1350.		0
28	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	6.0	323
29	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	6.0	687
30	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	6.0	508
31	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	6.0	246
32	Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2522-2547.	1.5	80
33	Megaripple. , 2014, , 1-5.		1
34	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	6.0	327
35	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	6.0	280
36	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	6.0	367

#	Article	IF	Citations
37	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	6.0	326
38	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	6.0	134
39	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	6.0	215
40	Curiosity's Mars Hand Lens Imager (MAHLI) Investigation. Space Science Reviews, 2012, 170, 259-317.	3.7	185
41	Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs. Journal of Geophysical Research, 2011, 116, .	3.3	86
42	Temporal observations of bright soil exposures at Gusev crater, Mars. Journal of Geophysical Research, 2011, 116, .	3.3	19
43	Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters. Journal of Geophysical Research, 2010, 115, .	3.3	73
44	Gone with the wind: Eolian erasure of the Mars Rover tracks. Journal of Geophysical Research, 2010, 115, .	3.3	40
45	Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	57
46	Columbia Hills, Mars: Aeolian features seen from the ground and orbit. Journal of Geophysical Research, 2008, 113, .	3.3	46
47	Characterization of traverse slippage experienced by Spirit rover on Husband Hill at Gusev crater. Journal of Geophysical Research, 2008, 113, .	3.3	22
48	Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations during Opportunity's first three extended missions. Journal of Geophysical Research, 2008, 113, .	3.3	39
49	Windâ€driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado―and surroundings at Gusev Crater. Journal of Geophysical Research, 2008, 113, .	3.3	255
50	First in situ investigation of a dark wind streak on Mars. Journal of Geophysical Research, 2008, 113, .	3.3	42
51	Degradation of Victoria crater, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	44
52	Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	149
53	Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	238
54	Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	64

#	Article	IF	CITATIONS
55	Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	215
56	Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site. Nature, 2005, 436, 58-61.	13.7	233
57	Martian variable features: New insight from the Mars Express Orbiter and the Mars Exploration Rover Spirit. Journal of Geophysical Research, 2005, 110, .	3.3	64
58	Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site. Science, 2004, 306, 1723-1726.	6.0	153
59	Textures of the Soils and Rocks at Gusev Crater from Spirit's Microscopic Imager. Science, 2004, 305, 824-826.	6.0	130
60	Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum. Science, 2004, 306, 1727-1730.	6.0	146
61	Surficial Deposits at Gusev Crater Along Spirit Rover Traverses. Science, 2004, 305, 807-810.	6.0	82
62	The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 2004, 305, 794-799.	6.0	404
63	The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars. Science, 2004, 306, 1698-1703.	6.0	507
64	Morphology of Europan bands at high resolution: A mid-ocean ridge-type rift mechanism. Journal of Geophysical Research, 2002, 107, 4-1.	3.3	101
65	Results of the Imager for Mars Pathfinder windsock experiment. Journal of Geophysical Research, 2000, 105, 24547-24562.	3.3	96
66	Aeolian features and processes at the Mars Pathfinder landing site. Journal of Geophysical Research, 1999, 104, 8573-8584.	3.3	83
67	The imager for Mars Pathfinder experiment. Journal of Geophysical Research, 1997, 102, 4003-4025.	3.3	128
68	Comparison of aerodynamic roughness measured in a field experiment and in a wind tunnel simulation. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48, 25-50.	1.7	13
69	Active ground patterns near Mars' equator in the Glen Torridon region of Gale Crater. Journal of Geophysical Research E: Planets, 0, , .	1.5	3