## **Thomas M Taylor**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9188060/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reduction of Bacterial Enteric Pathogens and Hygiene Indicator Bacteria on Tomato Skin Surfaces by a<br>Polymeric Nanoparticle-Loaded Plant-Derived Antimicrobial. Microorganisms, 2022, 10, 448.                                           | 1.6 | 0         |
| 2  | Complete Whole Genome Sequences of Escherichia coli Surrogate Strains and Comparison of Sequence Methods with Application to the Food Industry. Microorganisms, 2021, 9, 608.                                                               | 1.6 | 3         |
| 3  | Antimicrobial-Loaded Polymeric Micelles Inhibit Enteric Bacterial Pathogens on Spinach Leaf Surfaces<br>During Multiple Simulated Pathogen Contamination Events. Frontiers in Sustainable Food Systems,<br>2021, 5, .                       | 1.8 | 3         |
| 4  | Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and crossâ€contamination of food contact surfaces by bacteria. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3093-3134. | 5.9 | 54        |
| 5  | Development of durable and superhydrophobic nanodiamond coating on aluminum surfaces for improved hygiene of food contact surfaces. Journal of Food Engineering, 2021, 298, 110487.                                                         | 2.7 | 22        |
| 6  | Fabrication of Robust Superhydrophobic Coatings onto High-Density Polyethylene Food Contact<br>Surfaces for Enhanced Microbiological Food Safety. ACS Food Science & Technology, 2021, 1, 1180-1189.                                        | 1.3 | 5         |
| 7  | Encapsulated Plant-Derived Antimicrobial Reduces Enteric Bacterial Pathogens on Melon Surfaces<br>during Differing Contamination and Sanitization Treatment Scenarios. Applied Microbiology, 2021, 1,<br>460-470.                           | 0.7 | 1         |
| 8  | Thermal inactivation of Bacillus cereus spores during cooking of rice to ensure later safety of boudin. LWT - Food Science and Technology, 2020, 122, 108955.                                                                               | 2.5 | 7         |
| 9  | Validating Thermal Lethality to Salmonella enterica in Chicken Blood by Simulated Commercial<br>Rendering. Microorganisms, 2020, 8, 2009.                                                                                                   | 1.6 | 2         |
| 10 | Dual-Functional, Superhydrophobic Coatings with Bacterial Anticontact and Antimicrobial Characteristics. ACS Applied Materials & amp; Interfaces, 2020, 12, 21311-21321.                                                                    | 4.0 | 67        |
| 11 | Cetylpyridinium chloride produces increased zeta-potential on Salmonella Typhimurium cells, a<br>mechanism of the pathogen's inactivation. Npj Science of Food, 2019, 3, 21.                                                                | 2.5 | 15        |
| 12 | Inhibition of Escherichia coli O157:H7 and Salmonella enterica Isolates on Spinach Leaf Surfaces Using<br>Eugenol-Loaded Surfactant Micelles. Foods, 2019, 8, 575.                                                                          | 1.9 | 12        |
| 13 | Inhibition of bacterial human pathogens on tomato skin surfaces using eugenolâ€loaded surfactant<br>micelles during refrigerated and abuse storage. Journal of Food Safety, 2019, 39, e12598.                                               | 1.1 | 8         |
| 14 | Modification of aluminum surfaces with superhydrophobic nanotextures for enhanced food safety and hygiene. Food Control, 2019, 96, 463-469.                                                                                                 | 2.8 | 18        |
| 15 | Using antimicrobials as a food safety measure during phytosanitary treatments in mangoes.<br>Postharvest Biology and Technology, 2018, 138, 114-124.                                                                                        | 2.9 | 2         |
| 16 | The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion.<br>Scientific Reports, 2018, 8, 17247.                                                                                                         | 1.6 | 124       |
| 17 | Natural Food Antimicrobials: Recent Trends in Their Use, Limitations, and Opportunities for Their Applications in Food Preservation. ACS Symposium Series, 2018, , 25-43.                                                                   | 0.5 | 4         |
| 18 | Geraniol-Loaded Polymeric Nanoparticles Inhibit Enteric Pathogens on Spinach during Posttreatment<br>Refrigerated and Temperature Abuse Storage. Frontiers in Sustainable Food Systems, 2018, 2, .                                          | 1.8 | 11        |

THOMAS M TAYLOR

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide. Foods, 2018, 7, 114.                                                                       | 1.9 | 19        |
| 20 | Increased Effectiveness of Microbiological Verification by Concentration-Dependent Neutralization of Sanitizers Used in Poultry Slaughter and Fabrication Allowing Salmonella enterica Survival. Foods, 2018, 7, 32.                                          | 1.9 | 7         |
| 21 | Application of Surfactant Micelle-Entrapped Eugenol for Prevention of Growth of the Shiga<br>Toxin-Producing Escherichia coli in Ground Beef. Foods, 2017, 6, 69.                                                                                             | 1.9 | 8         |
| 22 | Effectiveness of a Commercial Lactic Acid Bacteria Intervention Applied to Inhibit Shiga<br>Toxin-Producing <i> Escherichia coli</i> on Refrigerated Vacuum-Aged Beef. International Journal of<br>Food Science, 2017, 2017, 1-6.                             | 0.9 | 5         |
| 23 | Validation of Thermal Lethality against Salmonella enterica in Poultry Offal during Rendering.<br>Journal of Food Protection, 2017, 80, 1422-1428.                                                                                                            | 0.8 | 4         |
| 24 | Escherichia albertii Inactivation following l-Lactic Acid Exposure or Cooking in Ground Beef. Journal of Food Protection, 2016, 79, 1475-1481.                                                                                                                | 0.8 | 1         |
| 25 | Development and characterization of geraniol-loaded polymeric nanoparticles with antimicrobial activity against foodborne bacterial pathogens. Journal of Food Engineering, 2016, 170, 64-71.                                                                 | 2.7 | 37        |
| 26 | Inhibition of Bacterial Pathogens in Medium and on Spinach Leaf Surfaces using Plantâ€Đerived<br>Antimicrobials Loaded in Surfactant Micelles. Journal of Food Science, 2015, 80, M2522-9.                                                                    | 1.5 | 37        |
| 27 | Reduction of Surrogates for Escherichia coli O157:H7 and Salmonella during the Production of<br>Nonintact Beef Products by Chemical Antimicrobial Interventions. Journal of Food Protection, 2015,<br>78, 881-887.                                            | 0.8 | 4         |
| 28 | Investigation into Formation of Lipid Hydroperoxides from Membrane Lipids in Escherichia coli O157:H7 following Exposure to Hot Water. Journal of Food Protection, 2015, 78, 1197-1202.                                                                       | 0.8 | 1         |
| 29 | Effectiveness of Sanitizing Products on Controlling Selected Pathogen Surrogates on Retail Deli<br>Slicers. Journal of Food Protection, 2015, 78, 707-715.                                                                                                    | 0.8 | 2         |
| 30 | Reduction of Salmonella enterica serotype Poona and background microbiota on fresh-cut<br>cantaloupe by electron beam irradiation. International Journal of Food Microbiology, 2015, 202, 66-72.                                                              | 2.1 | 35        |
| 31 | Inhibition of Escherichia coli O157:H7 and Salmonella enterica on spinach and identification of antimicrobial substances produced by a commercial Lactic Acid Bacteria food safety intervention. Food Microbiology, 2014, 38, 192-200.                        | 2.1 | 63        |
| 32 | Growth of Shiga toxin-producing Escherichia coli (STEC) and impacts ofÂchilling and post-inoculation storage on STEC attachment to beef surfaces. Food Microbiology, 2014, 44, 236-242.                                                                       | 2.1 | 5         |
| 33 | Naturally Occurring Antimicrobials for Minimally Processed Foods. Annual Review of Food Science and Technology, 2013, 4, 163-190.                                                                                                                             | 5.1 | 125       |
| 34 | Antimicrobial Efficacy of Poly (DLâ€lactideâ€coâ€glycolide) (PLGA) Nanoparticles with Entrapped Cinnamon<br>Bark Extract against <i>Listeria monocytogenes</i> and <i>Salmonella typhimurium</i> . Journal of<br>Food Science, 2013, 78, N626-32.             | 1.5 | 58        |
| 35 | Characterization of beta-cyclodextrin inclusion complexes containing essential oils<br>(trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery<br>applications. LWT - Food Science and Technology, 2013, 51, 86-93. | 2.5 | 318       |
| 36 | Antibiotic Resistance and Growth of the Emergent Pathogen Escherichia albertii on Raw Ground Beef<br>Stored under Refrigeration, Abuse, and Physiological Temperature. Journal of Food Protection, 2013,<br>76, 124-128.                                      | 0.8 | 17        |

THOMAS M TAYLOR

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of Chemical Sanitizers on Salmonella enterica Serovar Poona on the Surface of Cantaloupe<br>and Pathogen Contamination of Internal Tissues as a Function of Cutting Procedure. Journal of Food<br>Protection, 2012, 75, 1766-1773. | 0.8 | 22        |
| 38 | Efficacy of antimicrobials for the disinfection of pathogen contaminated green bell pepper and of<br>consumer cleaning methods for the decontamination of knives. International Journal of Food<br>Microbiology, 2012, 156, 76-82.        | 2.1 | 13        |
| 39 | Synergistic Inhibition of Listeria monocytogenes In Vitro through the Combination of Octanoic Acid and Acidic Calcium Sulfate. Journal of Food Protection, 2011, 74, 122-125.                                                             | 0.8 | 16        |
| 40 | Inhibition of <i>Listeria monocytogenes</i> by Food Antimicrobials Applied Singly and in Combination.<br>Journal of Food Science, 2010, 75, M557-63.                                                                                      | 1.5 | 90        |
| 41 | Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. International Journal of Food Microbiology, 2009, 129, 316-320.                                            | 2.1 | 113       |
| 42 | Suppression of Listeria monocytogenes Scott A in Fluid Milk by Free and Liposome-Entrapped Nisin.<br>Probiotics and Antimicrobial Proteins, 2009, 1, 152-158.                                                                             | 1.9 | 21        |
| 43 | LISTERIA MONOCYTOGENES AND ESCHERICHIA COLI O157:H7 INHIBITION IN VITRO BY<br>LIPOSOME-ENCAPSULATED NISIN AND ETHYLENE DIAMINETETRAACETIC ACID. Journal of Food Safety, 2008,<br>28, 183-197.                                             | 1.1 | 68        |
| 44 | Antimicrobial Efficacy of Eugenol Microemulsions in Milk against Listeria monocytogenes and Escherichia coli O157:H7. Journal of Food Protection, 2007, 70, 2631-2637.                                                                    | 0.8 | 95        |
| 45 | Inactivation of Escherichia coli K-12 Exposed to Pressures in Excess of 300 MPa in a High-Pressure<br>Homogenizer. Journal of Food Protection, 2007, 70, 1007-1010.                                                                       | 0.8 | 31        |
| 46 | Characterization of Antimicrobial-bearing Liposomes by ζ-Potential, Vesicle Size, and Encapsulation Efficiency. Food Biophysics, 2007, 2, 1-9.                                                                                            | 1.4 | 131       |
| 47 | Liposomal Nanocapsules in Food Science and Agriculture. Critical Reviews in Food Science and Nutrition, 2005, 45, 587-605.                                                                                                                | 5.4 | 452       |
| 48 | Ultrasonic Spectroscopy and Differential Scanning Calorimetry of Liposomal-Encapsulated Nisin.<br>Journal of Agricultural and Food Chemistry, 2005, 53, 8722-8728.                                                                        | 2.4 | 38        |
| 49 | Chemical Preservatives and Natural Antimicrobial Compounds. , 0, , 765-801.                                                                                                                                                               |     | 88        |