Kevin Marcel Van Geem

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9188041/kevin-marcel-van-geem-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 238 41 5,957 h-index g-index citations papers 6.2 6.47 7,837 252 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
238	Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate. <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate</i> . <i>Energy & Detailed Kinetic Modeling for the Pyrolysis</i> .	154.1	2
237	Assessing the feasibility of chemical recycling via steam cracking of untreated plastic waste pyrolysis oils: Feedstock impurities, product yields and coke formation <i>Waste Management</i> , 2022 , 141, 104-114	8.6	4
236	Analytics Driving Kinetics: Advanced Mass Spectrometric Characterization of Petroleum Products. <i>Energy & Description of Petroleum Products</i> (1998) <i>Energy & Description of P</i>	4.1	O
235	Study of the degradation of epoxy resins used in spacecraft components by thermogravimetry and fast pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2022 , 161, 105397	6	1
234	A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition. <i>Fuel Processing Technology</i> , 2022 , 227, 107090	7.2	13
233	Expanding the collection portfolio of plastic packaging: Impact on quantity and quality of sorted plastic waste fractions. <i>Resources, Conservation and Recycling</i> , 2022 , 178, 106025	11.9	2
232	Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC IGC IFID/MS. <i>Green Chemistry</i> , 2022 , 24, 191-206	10	9
231	A detailed experimental and kinetic modeling study on pyrolysis and oxidation of oxymethylene ether-2 (OME-2). <i>Combustion and Flame</i> , 2022 , 238, 111914	5.3	2
230	Maximizing light olefins and aromatics as high value base chemicals via single step catalytic conversion of plastic waste. <i>Chemical Engineering Journal</i> , 2022 , 428, 132087	14.7	9
229	Speeding up turbulent reactive flow simulation via a deep artificial neural network: A methodology study. <i>Chemical Engineering Journal</i> , 2022 , 429, 132442	14.7	2
228	Combined Catalytic and Pyrolytic Coking Model for Steam Cracking of Hydrocarbons. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 3917-3927	3.9	3
227	Removal of volatile components from plastic waste in liquid media: effect of temperature and particle size. <i>Resources, Conservation and Recycling</i> , 2022 , 106267	11.9	2
226	Statistical entropy of resources using a categorization tree for material enumeration: Framework development and application to a plastic packaging case study. <i>Resources, Conservation and Recycling</i> , 2022 , 181, 106259	11.9	
225	Mixture effects in alkane/cycloalkane hydroconversion over Pt/HUSY: Carbon number impact. <i>Fuel</i> , 2022 , 318, 123651	7.1	
224	Analysis of the kinetics, energy balance and carbon footprint of the delamination of multilayer flexible packaging films via carboxylic acids. <i>Resources, Conservation and Recycling</i> , 2022 , 181, 106256	11.9	O
223	Highly selective conversion of mixed polyolefins to valuable base chemicals using phosphorus-modified and steam-treated mesoporous HZSM-5 zeolite with minimal carbon footprint. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121251	21.8	1
222	CFD analysis on hydrodynamics and residence time distribution in a gas-liquid vortex unit. <i>Chemical Engineering Journal</i> , 2022 , 136812	14.7	2

(2021-2022)

221	Reducing CO2 emissions of existing ethylene plants: Evaluation of different revamp strategies to reduce global CO2 emission by 100 million tonnes. <i>Journal of Cleaner Production</i> , 2022 , 132127	10.3	О
220	Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter. <i>Science of the Total Environment</i> , 2022 , 838, 156092	10.2	2
219	Gas-solid hydrodynamics in a stator-rotor vortex chamber reactor. <i>Chemical Engineering Journal</i> , 2022 , 137323	14.7	0
218	Fast pyrolysis of polyurethanes and polyisocyanurate with and without flame retardant: Compounds of interest for chemical recycling. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 160, 105	5 3 74	2
217	Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate?. <i>Waste Management</i> , 2021 , 138, 83-115	8.6	11
216	Pyrolysis of end-of-life polystyrene in a pilot-scale reactor: Maximizing styrene production <i>Waste Management</i> , 2021 , 139, 85-95	8.6	5
215	Deodorization of post-consumer plastic waste fractions: A comparison of different washing media <i>Science of the Total Environment</i> , 2021 , 812, 152467	10.2	5
214	Boron-Modified Mesoporous ZSM-5 for the Conversion of Pyrolysis Vapors from LDPE and Mixed Polyolefins: Maximizing the C2II4 Olefin Yield with Minimal Carbon Footprint. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 14618-14630	8.3	4
213	Solids lateral mixing and compartmentalization in dynamically structured gasBolid fluidized beds. <i>Chemical Engineering Journal</i> , 2021 , 430, 133063	14.7	О
212	Micromixing in a gasilquid vortex reactor. AICHE Journal, 2021, 67, e17264	3.6	7
211	Endocrine disrupting potency and toxicity of novel sophorolipid quaternary ammonium salts. <i>Ecotoxicology</i> , 2021 , 30, 658-666	2.9	1
210	Molecular Reconstruction of Hydrocarbons and Sulfur-Containing Compounds in Atmospheric and Vacuum Gas Oils. <i>Energy & Discourty Studies</i> 2021, 35, 5777-5788	4.1	2
209	The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. <i>Progress in Energy and Combustion Science</i> , 2021 , 84, 100901	33.6	78
208	Learning Molecular Representations for Thermochemistry Prediction of Cyclic Hydrocarbons and Oxygenates. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 5166-5179	2.8	2
207	From 3D to 1D: Capturing the effect of particle clusters in downers in the fluid catalytic cracking of gasoil. <i>Chemical Engineering Research and Design</i> , 2021 , 170, 366-379	5.5	
206	Development of Lignin-Based Mesoporous Carbons for the Adsorption of Humic Acid. <i>ACS Omega</i> , 2021 , 6, 15222-15235	3.9	3
205	Biomass fast pyrolysis in an innovative gas-solid vortex reactor: Experimental proof of concept. Journal of Analytical and Applied Pyrolysis, 2021 , 156, 105165	6	9
204	Primary Thermal Decomposition Pathways of Hydroxycinnamaldehydes. <i>Energy & amp; Fuels</i> , 2021 , 35, 12216-12226	4.1	3

203	Effect of Newly Synthesized Salts and Three Common Micropollutants on the Biochemical Activity of Nitrifiers. <i>Sustainability</i> , 2021 , 13, 7417	3.6	
202	Detailed Group-Type Characterization of Plastic-Waste Pyrolysis Oils: By Comprehensive Two-Dimensional Gas Chromatography Including Linear, Branched, and Di-Olefins. <i>Separations</i> , 2021 , 8, 103	3.1	8
201	Techno-economic assessment of mechanical recycling of challenging post-consumer plastic packaging waste. <i>Resources, Conservation and Recycling</i> , 2021 , 170, 105607	11.9	22
200	On the primary thermal decomposition pathways of hydroxycinnamic acids. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 4207-4214	5.9	6
199	Combustion of ethylamine, dimethylamine and diethylamine: Theoretical and kinetic modeling study. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 585-592	5.9	2
198	Thermal decomposition of furans with oxygenated substituents: A combined experimental and quantum chemical study. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 699-707	5.9	3
197	catchyFOAM: Euler E uler CFD Simulations of Fluidized Bed Reactors with Microkinetic Modeling of Gas-Phase and Catalytic Surface Chemistry. <i>Energy & Description</i> 2021, 35, 2545-2561	4.1	7
196	Development and application of a predictive modelling approach for household packaging waste flows in sorting facilities. <i>Waste Management</i> , 2021 , 120, 290-302	8.6	24
195	Bond additivity corrections for CBS-QB3 calculated standard enthalpies of formation of H, C, O, N, and S containing species. <i>International Journal of Chemical Kinetics</i> , 2021 , 53, 345-355	1.4	2
194	Towards a better understanding of odor removal from post-consumer plastic film waste: A kinetic study on deodorization efficiencies with different washing media. <i>Waste Management</i> , 2021 , 120, 564-5	575 ⁶	10
193	Reuse of CO in energy intensive process industries. <i>Chemical Communications</i> , 2021 , 57, 10967-10982	5.8	10
192	Determination of heat capacity of carbon composites with application to carbon/phenolic ablators up to high temperatures. <i>Aerospace Science and Technology</i> , 2021 , 108, 106375	4.9	6
191	An assessment of electrified methanol production from an environmental perspective. <i>Green Chemistry</i> , 2021 , 23, 7243-7258	10	6
190	A Boudart Number for the Assessment of Irreducible Pellet-Scale Mass Transfer Limitations: Application to Oxidative Coupling of Methane. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 6538-6553	3.9	3
189	The Effect of Refractory Wall Emissivity on the Energy Efficiency of a Gas-Fired Steam Cracking Pilot Unit. <i>Materials</i> , 2021 , 14,	3.5	1
188	Towards a Better Understanding of Delamination of Multilayer Flexible Packaging Films by Carboxylic Acids. <i>ChemSusChem</i> , 2021 , 14, 4198-4213	8.3	8
187	Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats. <i>Engineering</i> , 2021 , 7, 1201-1201	9.7	15
186	Fast screening of Depolymerized Lignin Samples Through 2D-Liquid Chromatography Mapping. <i>ChemistryOpen</i> , 2021 , 10, 740-747	2.3	1

(2020-2021)

185	CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 165, 108434	3.7	5	
184	Fluid catalytic co-processing of bio-oils with petroleum intermediates: Comparison of vapour phase low pressure hydrotreating and catalytic cracking as pretreatment. <i>Fuel</i> , 2021 , 302, 121198	7.1	6	
183	Hydrocracking of complex mixtures: From bulk properties, over fundamental kinetics to detailed product composition. <i>Catalysis Today</i> , 2021 , 378, 189-201	5.3	0	
182	Detailed characterization of sulfur compounds in fast pyrolysis bio-oils using GC IGC-SCD and GCIMS. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 159, 105288	6	2	
181	The pyrolysis of oak with polyethylene, polypropylene and polystyrene using fixed bed and stirred reactors and TGA instrument. <i>Energy</i> , 2021 , 232, 121085	7.9	4	
180	Feasibility of biogas and oxy-fuel combustion in steam cracking furnaces: Experimental and computational study. <i>Fuel</i> , 2021 , 304, 121393	7.1	6	
179	Decomposition of carbon/phenolic composites for aerospace heatshields: Detailed speciation of phenolic resin pyrolysis products. <i>Aerospace Science and Technology</i> , 2021 , 119, 107079	4.9	8	
178	Fast estimation of standard enthalpy of formation with chemical accuracy by artificial neural network correction of low-level-of-theory ab initio calculations. <i>Chemical Engineering Journal</i> , 2021 , 426, 131304	14.7	2	
177	Intensifying Mass and Heat Transfer using a High-g Stator-Rotor Vortex Chamber. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 169, 108638	3.7	1	
176	Liquid hydrodynamics in a gas-liquid vortex reactor. <i>Chemical Engineering Science</i> , 2021 , 246, 116970	4.4	2	
175	Distribution Changes during Thermal Degradation of Poly(styrene peroxide) by Pairing Tree-Based Kinetic Monte Carlo and Artificial Intelligence Tools. <i>Industrial & Distribution Chemistry Research</i> , 2021 , 60, 3334-3353	3.9	5	
174	Computational fluid dynamics-based optimization of dimpled steam cracking reactors for reduced CO2 emissions. <i>AICHE Journal</i> , 2020 , 66, e16255	3.6	4	
173	Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. <i>Fuel</i> , 2020 , 275, 117744	7.1	6	
172	Reactor Engineering Aspects of the Lateral Flow Reactor. <i>Industrial & amp; Engineering Chemistry Research</i> , 2020 , 59, 11157-11169	3.9	0	
171	Dimples in turbulent pipe flows: experimental aero-thermal investigation. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 157, 119925	4.9	1	
170	Alumina-based Coating for Coke Reduction in Steam Crackers. <i>Materials</i> , 2020 , 13,	3.5	3	
169	Experimental and theoretical study of the thermal decomposition of ethyl acetate during fast pyrolysis. <i>Chemical Engineering Research and Design</i> , 2020 , 157, 153-161	5.5	7	
168	Artificial Intelligence for Computer-Aided Synthesis In Flow: Analysis and Selection of Reaction Components. <i>Frontiers in Chemical Engineering</i> , 2020 , 2,	1	7	

167	Crude to Olefins: Effect of Feedstock Composition on Coke Formation in a Bench-Scale Steam Cracking Furnace. <i>Industrial & Discourse Chemistry Research</i> , 2020 , 59, 2849-2859	3.9	4
166	Monometallic Cerium Layered Double Hydroxide Supported Pd-Ni Nanoparticles as High Performance Catalysts for Lignin Hydrogenolysis. <i>Materials</i> , 2020 , 13,	3.5	2
165	Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. <i>Waste Management</i> , 2020 , 104, 148-182	8.6	60
164	Hydrodynamic analysis of an axial impeller in a non-Newtonian fluid through particle image velocimetry. <i>AICHE Journal</i> , 2020 , 66, e16939	3.6	5
163	Microstructural Contributions of Different Polyolefins to the Deformation Mechanisms of Their Binary Blends. <i>Polymers</i> , 2020 , 12,	4.5	11
162	Steam Cracking Coke Properties and Their Influence on Furnace Run Length Predictions: Experimental and Modeling Study. <i>Industrial & Experimental Chemistry Research</i> , 2020 , 59, 22460-224	132	1
161	The role of chemistry in the oscillating combustion of hydrocarbons: An experimental and theoretical study. <i>Chemical Engineering Journal</i> , 2020 , 385, 123401	14.7	12
160	A multi-layered view of chemical and biochemical engineering. <i>Chemical Engineering Research and Design</i> , 2020 , 155, A133-A145	5.5	43
159	Sustainable innovations in steam cracking: CO2 neutral olefin production. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 239-257	4.9	24
158	Influence of obstacles on the wall heat transfer for 2D and 3D helically ribbed pipes. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 148, 119087	4.9	1
157	Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling. <i>Environmental Science & Environmental Science & E</i>	10.3	60
156	Detailed experimental and kinetic modeling study of 3-carene pyrolysis. <i>International Journal of Chemical Kinetics</i> , 2020 , 52, 785-795	1.4	2
155	Progress in Reaction Mechanisms and Reactor Technologies for Thermochemical Recycling of Poly(methyl methacrylate). <i>Polymers</i> , 2020 , 12,	4.5	27
154	Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis. <i>Green Chemistry</i> , 2020 , 22, 5376-5394	10	67
153	Connecting polymer synthesis and chemical recycling on a chain-by-chain basis: a unified matrix-based kinetic Monte Carlo strategy. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 1909-1928	4.9	25
152	Catalytic Effect of Dimethyl Disulfide on Coke Formation on High-Temperature Alloys: Myth or Reality?. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 15165-15178	3.9	2
151	Fouling in a Steam Cracker Convection Section Part 1: A Hybrid CFD-1D Model to Obtain Accurate Tube Wall Temperature Profiles. <i>Heat Transfer Engineering</i> , 2020 , 41, 127-137	1.7	3
150	Fouling in a Steam Cracker Convection Section Part 2: Coupled Tube Bank Simulation using an Improved Hybrid CFD-1D Model. <i>Heat Transfer Engineering</i> , 2020 , 41, 1531-1551	1.7	1

(2019-2020)

Large eddy simulation of tubular reactors with spherical dimples. <i>Chemical Engineering Journal</i> , 2020 , 380, 122463	14.7	4
Pyrometer-based control of a steam cracking furnace. <i>Chemical Engineering Research and Design</i> , 2020 , 153, 380-390	5.5	4
Effects of 2-D and 3-D helical inserts on the turbulent flow in pipes. <i>Experimental Thermal and Fluid Science</i> , 2020 , 110, 109923	3	5
Evaluation of a Ti-Base Alloy as Steam Cracking Reactor Material. <i>Materials</i> , 2019 , 12,	3.5	3
Process Intensification in a GasBolid Vortex Unit: Computational Fluid Dynamics Model Based Analysis and Design. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 12751-12765	3.9	8
Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor. <i>Powder Technology</i> , 2019 , 354, 410-422	5.2	6
Kinetic modeling of the pyrolysis chemistry of fossil and alternative feedstocks. <i>Computer Aided Chemical Engineering</i> , 2019 , 295-362	0.6	3
Making chemicals with electricity. <i>Science</i> , 2019 , 364, 734-735	33.3	53
Lipid-Based Quaternary Ammonium Sophorolipid Amphiphiles with Antimicrobial and Transfection Activities. <i>ChemSusChem</i> , 2019 , 12, 3642-3653	8.3	11
Phenolics isolation from bio-oil using the metal-organic framework MIL-53(Al) as a highly selective adsorbent. <i>Chemical Communications</i> , 2019 , 55, 6245-6248	5.8	3
Asymmetrical, Symmetrical, Divalent, and Y-Shaped (Bola)amphiphiles: The Relationship between the Molecular Structure and Self-Assembly in Amino Derivatives of Sophorolipid Biosurfactants. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 3841-3858	3.4	14
An experimental and numerical study of the suppression of jets, counterflow, and backflow in vortex units. <i>AICHE Journal</i> , 2019 , 65, e16614	3.6	9
Analytical Py-GC/MS of Genetically Modified Poplar for the Increased Production of Bio-aromatics. <i>Computational and Structural Biotechnology Journal</i> , 2019 , 17, 599-610	6.8	3
Geminal Coordinatively Unsaturated Sites on MOF-808 for the Selective Uptake of Phenolics from a Real Bio-Oil Mixture. <i>ChemSusChem</i> , 2019 , 12, 1256-1266	8.3	20
On-the-fly ab initio calculations toward accurate rate coefficients. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 283-290	5.9	13
The thermal decomposition of furfural: molecular chemistry unraveled. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 445-452	5.9	10
Artificial Intelligence in Steam Cracking Modeling: A Deep Learning Algorithm for Detailed Effluent Prediction. <i>Engineering</i> , 2019 , 5, 1027-1040	9.7	25
QUANTIS: Data quality assessment tool by clustering analysis. <i>International Journal of Chemical Kinetics</i> , 2019 , 51, 872-885	1.4	3
	Pyrometer-based control of a steam cracking furnace. Chemical Engineering Research and Design, 2020, 153, 380-390 Effects of 2-D and 3-D helical inserts on the turbulent flow in pipes. Experimental Thermal and Fluid Science, 2020, 110, 109923 Evaluation of a Ti-Base Alloy as Steam Cracking Reactor Material. Materials, 2019, 12, Process Intensification in a GasBolid Vortex Unit: Computational Fluid Dynamics Model Based Analysis and Design. Industrial & Dynamics Model Based Analysis and Design. Industrial & Dynamics Fengineering Chemistry Research, 2019, 58, 12751-12765 Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor. Powder Technology, 2019, 354, 410-422 Kinetic modeling of the pyrolysis chemistry of fossil and alternative feedstocks. Computer Aided Chemical Engineering, 2019, 295-362 Making chemicals with electricity. Science, 2019, 364, 734-735 Lipid-Based Quaternary Ammonium Sophorolipid Amphiphiles with Antimicrobial and Transfection Activities. ChemSusChem, 2019, 12, 3642-3653 Phenolics isolation from bio-oil using the metal-organic framework MIL-53(Al) as a highly selective adsorbent. Chemical Communications, 2019, 55, 6245-6248 Asymmetrical, Symmetrical, Divalent, and Y-Shaped (Bola)amphiphiles: The Relationship between the Molecular Structure and Self-Assembly in Amino Derivatives of Sophorolipid Biosurfactants. Journal of Physical Chemistry B, 2019, 123, 3841-3858 An experimental and numerical study of the suppression of jets, counterflow, and backflow in vortex units. AICHE Journal, 2019, 65, e16614 Analytical Py-GC/MS of Genetically Modified Poplar for the Increased Production of Bio-aromatics. Computational and Structural Biotechnology Journal, 2019, 17, 599-610 Geminal Coordinatively Unsaturated Sites on MOF-808 for the Selective Uptake of Phenolics from a Real Bio-Oil Mixture. ChemSusChem, 2019, 12, 1256-1266 On-the-fly ab initio calculations toward accurate rate coefficients. Proceedings of the Combustion Institute, 2019, 37, 445-452 Ar	Pyrometer-based control of a steam cracking furnace. Chemical Engineering Research and Design, 2020, 153, 380-390 Effects of 2-D and 3-D helical inserts on the turbulent flow in pipes. Experimental Thermal and Fluid Science, 2020, 110, 109923 Evaluation of a Ti-Base Alloy as Steam Cracking Reactor Material. Materials, 2019, 12, 35 Process Intensification in a GasBolid Vortex Unit: Computational Fluid Dynamics Model Based Analysis and Design. Industrial & Science, 2019, 12, 35 Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor. Pawder Technology, 2019, 354, 410-422 Kinetic modeling of the pyrolysis chemistry of fossil and alternative feedstocks. Computer Aided Chemical Engineering, 2019, 295-362 Making chemicals with electricity. Science, 2019, 364, 734-735 Lipid-Based Quaternary Ammonium Sophorolipid Amphiphiles with Antimicrobial and Transfection Activities. ChemSusChem, 2019, 12, 3642-3653 Phenolics isolation from bio-oil using the metal-organic framework MIL-53(Al) as a highly selective adsorbent. Chemical Communications, 2019, 55, 6245-6248 Asymmetrical, Symmetrical, Divalent, and Y-Shaped (Bola)amphiphiles: The Relationship between the Molecular Structure and Self-Assembly in Amino Derivatives of Sophorolipid Biosurfactants. Journal of Physical Chemistry B, 2019, 123, 3841-3858 An experimental and numerical study of the suppression of jets, counterflow, and backflow in vortex units. AlCHE Journal, 2019, 65, e16614 Analytical Py-GC/MS of Genetically Modified Poplar for the Increased Production of Bio-aromatics. Computational and Structural Biotechnology Journal, 2019, 17, 599-610 Geminal Coordinatively Unsaturated Sites on MOF-808 for the Selective Uptake of Phenolics from a Real Bio-Oil Mixture. ChemSusChem, 2019, 12, 1256-1266 On-the-fly ab initio calculations toward accurate rate coefficients. Proceedings of the Combustion Institute, 2019, 37, 445-452 Artificial Intelligence in Steam Cracking Modeling: A Deep Learning Algorithm for Detailed Efflu

131	Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering. <i>Current Opinion in Chemical Engineering</i> , 2019 , 26, 81-87	5.4	29
130	Catalyst ignition and extinction: A microkinetics-based bifurcation study of adiabatic reactors for oxidative coupling of methane. <i>Chemical Engineering Science</i> , 2019 , 199, 635-651	4.4	17
129	Methane reforming to valuable products by an atmospheric pressure direct current discharge. Journal of Cleaner Production, 2019 , 209, 655-664	10.3	9
128	Measuring biomass fast pyrolysis kinetics: State of the art. <i>Wiley Interdisciplinary Reviews: Energy and Environment</i> , 2019 , 8, e326	4.7	27
127	The role of mass and heat transfer in the design of novel reactors for oxidative coupling of methane. <i>Chemical Engineering Science</i> , 2019 , 198, 268-289	4.4	30
126	Evaluation of biological properties and fate in the environment of a new class of biosurfactants. <i>Chemosphere</i> , 2018 , 200, 561-568	8.4	5
125	Detailed Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis in the Presence of Ethene. <i>Energy & Energy & Energ</i>	4.1	15
124	Coking Tendency of 25Cr-35Ni Alloys: Influence of Temperature, Sulfur Addition, and Cyclic Aging. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 3138-3148	3.9	9
123	Automated reaction database and reaction network analysis: extraction of reaction templates using cheminformatics. <i>Journal of Cheminformatics</i> , 2018 , 10, 11	8.6	17
122	Ab initio derived group additivity model for intramolecular hydrogen abstraction reactions. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 10877-10894	3.6	7
121	A model of tetrahydrofuran low-temperature oxidation based on theoretically calculated rate constants. <i>Combustion and Flame</i> , 2018 , 191, 252-269	5.3	23
120	Application of Py-GC/MS coupled with PARAFAC2 and PLS-DA to study fast pyrolysis of genetically engineered poplars. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 129, 101-111	6	7
119	Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane. <i>Combustion and Flame</i> , 2018 , 190, 270-283	5.3	51
118	CoatAlloy Barrier Coating for Reduced Coke Formation in Steam Cracking Reactors: Experimental Validation and Simulations. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 897-907	3.9	10
117	Compositional Characterization of Pyrolysis Fuel Oil from Naphtha and Vacuum Gas Oil. <i>Energy & Energy Enels</i> , 2018 , 32, 1276-1286	4.1	10
116	Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. <i>Energy and Environmental Science</i> , 2018 , 11, 1788-1802	35.4	64
115	Pressure dependent kinetic analysis of pathways to naphthalene from cyclopentadienyl recombination. <i>Combustion and Flame</i> , 2018 , 187, 247-256	5.3	42
114	Sophorolipid Modification: The Power of Yeasts and Enzymes 2018 , 315-341		1

113	Computational Fluid Dynamics-Assisted Process Intensification Study for Biomass Fast Pyrolysis in a GasBolid Vortex Reactor. <i>Energy & Damp; Fuels</i> , 2018 , 32, 10169-10183	4.1	21
112	Numerical and experimental evaluation of heat transfer in helically corrugated tubes. <i>AICHE Journal</i> , 2018 , 64, 1702-1713	3.6	14
111	Computational Fluid Dynamics-Based Study of a High Emissivity Coil Coating in an Industrial Steam Cracker. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 16782-16794	3.9	6
110	Effect of Long-Term High Temperature Oxidation on the Coking Behavior of Ni-Cr Superalloys. <i>Materials</i> , 2018 , 11,	3.5	8
109	Combined characterization using HT-GC IGC-FID and FT-ICR MS: A pyrolysis fuel oil case study. <i>Fuel Processing Technology</i> , 2018 , 182, 15-25	7.2	10
108	Impact of a Helical Ridge within a Tubular Membrane Channel on Fluid Flow and Particle Behavior: A Model-Based Analysis. <i>Industrial & Engineering Chemistry Research</i> , 2018 ,	3.9	
107	State-of-the-art of Coke Formation during Steam Cracking: Anti-Coking Surface Technologies. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 16117-16136	3.9	32
106	Prediction of the PIONA and oxygenate composition of unconventional fuels with the Pseudo-Component Property Estimation (PCPE) method. Application to an Automotive Shredder Residues-derived gasoline 2018 ,		3
105	Synthesis and Biological Evaluation of Bolaamphiphilic Sophorolipids. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8992-9005	8.3	14
104	Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. <i>Energy & Description</i> 2018, 32, 7153	-741.68	7
103	Decomposition and isomerization of 1-pentanol radicals and the pyrolysis of 1-pentanol. <i>Combustion and Flame</i> , 2018 , 196, 500-514	5.3	13
102	Periodic reactive flow simulation: Proof of concept for steam cracking coils. <i>AICHE Journal</i> , 2017 , 63, 1715-1726	3.6	12
101	Techno-economic analysis of an absorption based methanol to olefins recovery section. <i>Applied Thermal Engineering</i> , 2017 , 115, 477-490	5.8	9
100	Optimization of the in Situ Pretreatment of High Temperature Ni I Alloys for Ethane Steam Cracking. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 1424-1438	3.9	22
99	Computational fluid dynamics-based steam cracking furnace optimization using feedstock flow distribution. <i>AICHE Journal</i> , 2017 , 63, 3199-3213	3.6	9
98	Comprehensive two-dimensional gas chromatography in combination with pixel-based analysis for fouling tendency prediction. <i>Journal of Chromatography A</i> , 2017 , 1501, 89-98	4.5	7
97	Quantitative on-line analysis of sulfur compounds in complex hydrocarbon matrices. <i>Journal of Chromatography A</i> , 2017 , 1509, 102-113	4.5	13
96	New Trends in Olefin Production. <i>Engineering</i> , 2017 , 3, 171-178	9.7	320

95	Design and cold flow testing of a Gas-Solid Vortex Reactor demonstration unit for biomass fast pyrolysis. <i>Chemical Engineering Journal</i> , 2017 , 329, 198-210	14.7	37
94	Legal, Social, Ethical, and Medical Perspectives on the Care of the Statutory Rape Adolescent in the Emergency Department. <i>Annals of Emergency Medicine</i> , 2017 , 70, 72-79	2.1	1
93	Incident Radiative Heat Flux Based Method for the Coupled Run Length Simulation of Steam Cracking Furnaces. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 4156-4172	3.9	7
92	Towards first-principles based kinetic modeling of biomass fast pyrolysis. <i>Biomass Conversion and Biorefinery</i> , 2017 , 7, 305-317	2.3	19
91	Experimental and modeling study of the pyrolysis and combustion of 2-methyl-tetrahydrofuran. <i>Combustion and Flame</i> , 2017 , 176, 409-428	5.3	21
90	Group additive modeling of cyclopentane pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017 , 128, 437-450	6	10
89	Impact of Initial Surface Roughness and Aging on Coke Formation during Ethane Steam Cracking. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 12495-12507	3.9	8
88	Quantitative compositional analysis of Estonian shale oil using comprehensive two dimensional gas chromatography. <i>Fuel Processing Technology</i> , 2017 , 167, 241-249	7.2	23
87	Experimental and kinetic modeling study of the pyrolysis and oxidation of 1,5-hexadiene: The reactivity of allylic radicals and their role in the formation of aromatics. <i>Fuel</i> , 2017 , 208, 779-790	7.1	14
86	Mechanical and chemical recycling of solid plastic waste. Waste Management, 2017, 69, 24-58	8.6	858
85	CFD simulations of Industrial Steam Cracking Reactors: Turbulence@hemistry Interaction and Dynamic Zoning. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 14959-14971	3.9	5
84	Dynamic simulation of fouling in steam cracking reactors using CFD. <i>Chemical Engineering Journal</i> , 2017 , 329, 77-87	14.7	13
83	Thermal Fouling of Heat Exchanger Tubes due to Heavy Hydrocarbon Droplets Impingement. <i>Heat Transfer Engineering</i> , 2017 , 38, 712-720	1.7	4
82	IMPROOF: Integrated Model Guided Process Optimization of Steam Cracking Furnaces. <i>Smart Innovation, Systems and Technologies</i> , 2017 , 589-600	0.5	2
81	Conversion of Solid Waste to Diesel via Catalytic Pressureless Depolymerization: Pilot Scale Production and Detailed Compositional Characterization. <i>Energy & Description</i> 2016, 30, 8292-8303	4.1	9
80	Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer. <i>Journal of Chromatography A</i> , 2016 , 1460, 135-46	4.5	30
79	Steam cracking of bio-derived normal and branched alkanes: Influence of branching on product distribution and formation of aromatics. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016 , 122, 468-478	6	3
78	Kinetic Study of the Thermal and Catalytic Cracking of Waste Motor Oil to Diesel-like Fuels. <i>Energy</i> & amp; Fuels, 2016 , 30, 9712-9720	4.1	10

(2015-2016)

77	1D Model for Coupled Simulation of Steam Cracker Convection Section with Improved Evaporation Model. <i>Chemie-Ingenieur-Technik</i> , 2016 , 88, 1650-1664	0.8	8
76	On-line Analysis of Nitrogen Containing Compounds in Complex Hydrocarbon Matrixes. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	4
75	Sophorolipid Amine Oxide Production by a Combination of Fermentation Scale-up and Chemical Modification. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 7273-7281	3.9	18
74	Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds. <i>Bioresource Technology</i> , 2016 , 207, 229-36	11	21
73	In situ performance of various metal doped catalysts in micro-pyrolysis and continuous fast pyrolysis. <i>Fuel Processing Technology</i> , 2016 , 144, 312-322	7.2	26
72	Evaluation of the transfection efficacies of quaternary ammonium salts prepared from sophorolipids. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 3744-51	3.9	10
71	An experimental and kinetic modeling study of Evalerolactone pyrolysis. <i>Combustion and Flame</i> , 2016 , 164, 183-200	5.3	7
70	Chemical and enzymatic modification of sophorolipids. <i>Green Chemistry</i> , 2016 , 18, 76-104	10	39
69	Implementation of Stereochemistry in Automatic Kinetic Model Generation. <i>International Journal of Chemical Kinetics</i> , 2016 , 48, 755-769	1.4	3
68	Challenges and opportunities for molecule-based management of chemical processes. <i>Current Opinion in Chemical Engineering</i> , 2016 , 13, 142-149	5.4	15
67	Thermal Decomposition of Sulfur Compounds and their Role in Coke Formation during Steam Cracking of Heptane. <i>Chemical Engineering and Technology</i> , 2016 , 39, 2096-2106	2	6
66	Understanding the reactivity of unsaturated alcohols: Experimental and kinetic modeling study of the pyrolysis and oxidation of 3-methyl-2-butenol and 3-methyl-3-butenol. <i>Combustion and Flame</i> , 2016 , 171, 237-251	5.3	16
65	Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using C NMR and Comprehensive GC IGC. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4974-4985	8.3	84
64	Computational Fluid Dynamic Design of Jet Stirred Reactors for Measuring Intrinsic Kinetics of Gas-Phase and Gas-Solid Reactions. <i>International Journal of Chemical Kinetics</i> , 2016 , 48, 556-569	1.4	1
63	Impact of flue gas radiative properties and burner geometry in furnace simulations. <i>AICHE Journal</i> , 2015 , 61, 936-954	3.6	20
62	JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation. <i>Combustion and Flame</i> , 2015 , 162, 3115-3129	5.3	57
61	Symmetry calculation for molecules and transition states. <i>Journal of Computational Chemistry</i> , 2015 , 36, 181-92	3.5	6
60	Rule-based ab initio kinetic model for alkyl sulfide pyrolysis. <i>Chemical Engineering Journal</i> , 2015 , 278, 385-393	14.7	22

59	A new class of antimicrobial biosurfactants: quaternary ammonium sophorolipids. <i>Green Chemistry</i> , 2015 , 17, 3373-3377	10	29
58	CFD-based design of 3D pyrolysis reactors: RANS vs. LES. <i>Chemical Engineering Journal</i> , 2015 , 282, 66-7	614.7	31
57	Catalytic Coating for Reduced Coke Formation in Steam Cracking Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 9525-9535	3.9	35
56	Pyrolysis and combustion chemistry of tetrahydropyran: Experimental and modeling study. <i>Combustion and Flame</i> , 2015 , 162, 4283-4303	5.3	17
55	Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC IGC IFID/SCD/NCD/TOF-MS. <i>Fuel</i> , 2015 , 140, 398-406	7.1	83
54	Microkinetic model for the pyrolysis of methyl esters: From model compound to industrial biodiesel. <i>AICHE Journal</i> , 2015 , 61, 4309-4322	3.6	7
53	Necessity and Feasibility of 3D Simulations of Steam Cracking Reactors. <i>Industrial & amp; Engineering Chemistry Research</i> , 2015 , 54, 12270-12282	3.9	21
52	Experimental and computational study of the initial decomposition of gamma-valerolactone. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 515-523	5.9	15
51	Kinetic Modeling of Jet Propellant-10 Pyrolysis. Energy & Damp; Fuels, 2015, 29, 413-427	4.1	37
50	Impact of Radiation Models in Coupled Simulations of Steam Cracking Furnaces and Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 2453-2465	3.9	23
49	Automatic Mechanism and Kinetic Model Generation for Gas- and Solution-Phase Processes: A Perspective on Best Practices, Recent Advances, and Future Challenges. <i>International Journal of Chemical Kinetics</i> , 2015 , 47, 199-231	1.4	80
48	Influence of the Reactor Material Composition on Coke Formation during Ethane Steam Cracking. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 6358-6371	3.9	43
47	Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two-dimensional gas-chromatography coupled to multiple detectors. <i>Journal of Chromatography A</i> , 2014 , 1359, 237-46	4.5	47
46	Coking Resistance of Specialized Coil Materials during Steam Cracking of Sulfur-Free Naphtha. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2014 , 53, 13644-13655	3.9	29
45	Catalytic Fast Pyrolysis of Pine Wood: Effect of Successive Catalyst Regeneration. <i>Energy & Energy & </i>	4.1	53
44	GPU based simulation of reactive mixtures with detailed chemistry in combination with tabulation and an analytical Jacobian. <i>Computers and Chemical Engineering</i> , 2014 , 71, 521-531	4	12
43	Combined Comprehensive Two-Dimensional Gas Chromatography Analysis of Polyaromatic Hydrocarbons/Polyaromatic Sulfur-Containing Hydrocarbons (PAH/PASH) in Complex Matrices. <i>Industrial & Difference on the Matrices of Chemistry Research</i> , 2014 , 53, 15436-15446	3.9	33
42	Experimental and Modeling Study on the Thermal Decomposition of Jet Propellant-10. <i>Energy & Emp; Fuels</i> , 2014 , 28, 4976-4985	4.1	36

(2011-2014)

41	Swirl flow tube reactor technology: An experimental and computational fluid dynamics study. <i>Chemical Engineering Journal</i> , 2014 , 238, 56-65	14.7	35
40	An experimental and kinetic modeling study of cyclopentadiene pyrolysis: First growth of polycyclic aromatic hydrocarbons. <i>Combustion and Flame</i> , 2014 , 161, 2739-2751	5.3	66
39	Computational fluid dynamics-based design of finned steam cracking reactors. <i>AICHE Journal</i> , 2014 , 60, 794-808	3.6	41
38	Assessing the Potential of Crude Tall Oil for the Production of Green-Base Chemicals: An Experimental and Kinetic Modeling Study. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 18430-18442	3.9	15
37	Value Added Hydrocarbons from Distilled Tall Oil via Hydrotreating over a Commercial NiMo Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 10114-10125	3.9	19
36	Production of bio-ethene and propene: alternatives for bulk chemicals and polymers. <i>Green Chemistry</i> , 2013 , 15, 3064	10	30
35	Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 103, 343-351	6	81
34	Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. <i>Fuel</i> , 2013 , 112, 355-365	7.1	170
33	The thermal decomposition of 2,5-dimethylfuran. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 251	1-3.58	66
32	Combustion and pyrolysis of iso-butanol: Experimental and chemical kinetic modeling study. <i>Combustion and Flame</i> , 2013 , 160, 1907-1929	5-3	61
31	Quantitative analysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography. <i>Journal of Chromatography A</i> , 2012 , 1257, 131-40	4.5	109
30	Genesys: Kinetic model construction using chemo-informatics. <i>Chemical Engineering Journal</i> , 2012 , 207-208, 526-538	14.7	90
29	A comprehensive study of methyl decanoate pyrolysis. <i>Energy</i> , 2012 , 43, 146-160	7.9	33
28	Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils. <i>Bioresource Technology</i> , 2012 , 126, 48-55	11	29
27	An Experimental and Kinetic Modeling Study of Pyrolysis and Combustion of Acetone B utanol E thanol (ABE) Mixtures. <i>Combustion Science and Technology</i> , 2012 , 184, 942-955	1.5	51
26	Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners. <i>Computers and Chemical Engineering</i> , 2012 , 38, 24-34	4	25
25	Comprehensive CFD Simulation of Product Yields and Coking Rates for a Floor- and Wall-Fired Naphtha Cracking Furnace. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 13672-13685	3.9	27
24	Modeling the Composition of Crude Oil Fractions Using Constrained Homologous Series. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 10850-10858	3.9	24

23	Biomass to olefins: Cracking of renewable naphtha. Chemical Engineering Journal, 2011, 176-177, 178-1	87 4.7	57
22	Comprehensive reaction mechanism for n-butanol pyrolysis and combustion. <i>Combustion and Flame</i> , 2011 , 158, 16-41	5.3	210
21	First principle-based simulation of ethane steam cracking. AICHE Journal, 2011, 57, 482-496	3.6	51
20	Rapeseed oil methyl ester pyrolysis: on-line product analysis using comprehensive two-dimensional gas chromatography. <i>Journal of Chromatography A</i> , 2011 , 1218, 3217-23	4.5	47
19	Kinetic study of the thermal rearrangement of cis- and trans-2-pinanol. <i>Journal of Analytical and Applied Pyrolysis</i> , 2011 , 90, 187-196	6	9
18	Accurate High-Temperature Reaction Networks for Alternative Fuels: Butanol Isomers. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 10399-10420	3.9	68
17	Molecular reconstruction of complex hydrocarbon mixtures: An application of principal component analysis. <i>AICHE Journal</i> , 2010 , 56, 3174-3188	3.6	44
16	On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography. <i>Journal of Chromatography A</i> , 2010 , 1217, 6623-33	4.5	78
15	Coke Formation in the Transfer Line Exchanger during Steam Cracking of Hydrocarbons. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 10343-10358	3.9	49
14	Influence of Silicon and Silicon/Sulfur-Containing Additives on Coke Formation during Steam Cracking of Hydrocarbons. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 1468-1482	3.9	40
13	Using elementary reactions to model growth processes of polyaromatic hydrocarbons under pyrolysis conditions of light feedstocks. <i>Molecular Simulation</i> , 2008 , 34, 193-199	2	11
12	Challenges of Modeling Steam Cracking of Heavy Feedstocks. <i>Oil and Gas Science and Technology</i> , 2008 , 63, 79-94	1.9	61
11	Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model. <i>Chemical Engineering Journal</i> , 2008 , 137, 411-421	14.7	42
10	Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices. <i>Computers and Chemical Engineering</i> , 2007 , 31, 1020-1034	4	70
9	Dimensional analysis for scaling up and down steam cracking coils. <i>Chemical Engineering Journal</i> , 2007 , 134, 3-10	14.7	43
8	Automatic reaction network generation using RMG for steam cracking of n-hexane. <i>AICHE Journal</i> , 2006 , 52, 718-730	3.6	97
7	Two Severity Indices for Scale-Up of Steam Cracking Coils. <i>Industrial & Discourse Industrial Control of Steam Cracking Coils</i> . <i>Industrial & Discourse Industrial Control of Steam Cracking Coils</i> . <i>Industrial & Discourse Industrial & Discourse Industri</i>	3.9	37
6	Effect of radial temperature profiles on yields in steam cracking. <i>AICHE Journal</i> , 2004 , 50, 173-183	3.6	57

LIST OF PUBLICATIONS

1

5	Chemisorption of CO 2 in a gasIlquid vortex reactor: An interphase mass transfer efficiency assessment. <i>AICHE Journal</i> ,	3.6	1
4	Toward an e-chemistree: Materials for electrification of the chemical industry. MRS Bulletin,1	3.2	3
3	Recent Advances in Pre-Treatment of Plastic Packaging Waste		2
2	The pyrolysis study of polybutadiene rubber under different structural and process parameters: comparison with polyvinyl chloride degradation. <i>Journal of Thermal Analysis and Calorimetry</i> ,1	4.1	

Exceeding Equilibrium CO2 Conversion by Plasma-Assisted Chemical Looping. ACS Energy Letters, 1896-1902 o