Kazuaki Ishihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187986/publications.pdf

Version: 2024-02-01

310 papers 22,060 citations

81 h-index 130 g-index

404 all docs

404 docs citations

times ranked

404

12296 citing authors

#	Article	IF	Citations
1	A π–Cu(II)â^'Ï€ Complex as an Extremely Active Catalyst for Enantioselective α-Halogenation of <i>N</i> -Acyl-3,5-dimethylpyrazoles. ACS Catalysis, 2022, 12, 1012-1017.	11.2	16
2	Thorpe–Ingold Effect on High-Performance Chiral π–Copper(II) Catalyst. Synlett, 2022, 33, 585-588.	1.8	8
3	Hypoiodite-Catalyzed Oxidative Umpolung of Indoles for Enantioselective Dearomatization. Journal of the American Chemical Society, 2022, 144, 5756-5761.	13.7	28
4	I + /TBHP Catalysis For Tandem Oxidative Cyclization To Indolo [2,3―b] quinolines. Asian Journal of Organic Chemistry, 2021, 10, 164-169.	2.7	12
5	Reusable Silicaâ€Supported Ammonium BINSate Catalysts for Enantio†and Diastereoselective Friedel–Craftsâ€Type Double Aminoalkylation of N â€Alkylpyrroles with Aldimines. Asian Journal of Organic Chemistry, 2021, 10, 360-365.	2.7	5
6	Chemoselective Transesterification of Methyl (Meth)acrylates Catalyzed by Sodium(I) or Magnesium(II) Aryloxides. ACS Catalysis, 2021, 11, 199-207.	11.2	10
7	Insight into the Mechanism of the Acylation of Alcohols with Acid Anhydrides Catalyzed by Phosphoric Acid Derivatives. Journal of Organic Chemistry, 2021, 86, 5197-5212.	3.2	7
8	Enantio- and Diastereoselective Carbonyl-Ene Cyclization–Acetalization Tandem Reaction Catalyzed by Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acids. ACS Catalysis, 2021, 11, 6121-6127.	11.2	23
9	Oxidative Ritterâ€type Chloroamidation of Alkenes Using NaCl and Oxone. Asian Journal of Organic Chemistry, 2021, 10, 2907-2910.	2.7	5
10	Radical Cation [4+2] Cycloaddition of Nonâ€Conjugated Tetrasubstituted Alkenes by an FeCl ₃ /AgSbF ₆ Coâ€Initiator. Asian Journal of Organic Chemistry, 2021, 10, 2534-2537.	2.7	3
11	Hypoiodite-catalysed oxidative homocoupling of arenols and tandem oxidation/cross-coupling of hydroquinones with arenes. Chemical Communications, 2021, 57, 11625-11628.	4.1	4
12	Cp*Rh ^{III} /Chiral Disulfonate/CuOAc Catalyst System for the Enantioselective Intramolecular Oxyamination of Alkenes. ACS Catalysis, 2021, 11, 15187-15193.	11.2	7
13	Initiators for Radical Cation-induced $[2 + 2]$ - and $[4 + 2]$ -Cycloadditions of Electron-rich Alkenes. Chemistry Letters, 2020, 49, 107-113.	1.3	19
14	Chemoselective Oxidative Spiroetherification and Spiroamination of Arenols Using I ⁺ /Oxone Catalysis. Organic Letters, 2020, 22, 560-564.	4.6	17
15	Radicalâ€Cationâ€Induced Crossed [2+2] Cycloaddition of Electronâ€Deficient Anetholes Initiated by Iron(III) Salt. Advanced Synthesis and Catalysis, 2020, 362, 960-963.	4.3	12
16	Hypoiodite-Catalyzed Chemoselective Tandem Oxidation of Homotryptamines to Peroxy- and Epoxytetrahydropyridoindolenines. Organic Letters, 2020, 22, 8049-8054.	4.6	13
17	Multifactor Control of Vinyl Monomer Sequence, Molecular Weight, and Tacticity via Iterative Radical Additions and Olefin Metathesis Reactions. Journal of the American Chemical Society, 2020, 142, 18955-18962.	13.7	29
18	Enantio―and Siteâ€Selective αâ€Fluorination of N â€Acyl 3,5â€Dimethylpyrazoles Catalyzed by Chiral π–Cu Complexes. Angewandte Chemie, 2020, 132, 17794-17800.	2.0	5

#	Article	IF	CITATIONS
19	Enantioselective Aza-Friedel–Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral <i>C</i> ₁ -Symmetric Bis(phosphoric Acid). Organic Letters, 2020, 22, 9614-9620.	4.6	20
20	Halogen-Bonding Interaction between I2 and N-Iodosuccinimide in Lewis Base-Catalyzed Iodolactonization. Organic Letters, 2020, 22, 4888-4892.	4.6	10
21	Enantioselective 1,4â€Addition Reaction of α,βâ€Unsaturated Carboxylic Acids with Cycloalkanones Using Cooperative Chiral Amine–Boronic Acid Catalysts. Angewandte Chemie - International Edition, 2020, 59, 17256-17260.	13.8	19
22	Oneâ€Pot Tandem Michael Addition/Enantioselective Coniaâ€Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angewandte Chemie - International Edition, 2020, 59, 16470-16474.	13.8	16
23	Chemoselective oxidative generation of ortho-quinone methides and tandem transformations. Nature Chemistry, 2020, 12, 353-362.	13.6	69
24	Enantioselective 1,4â€Addition Reaction of α,βâ€Unsaturated Carboxylic Acids with Cycloalkanones Using Cooperative Chiral Amine–Boronic Acid Catalysts. Angewandte Chemie, 2020, 132, 17409-17413.	2.0	5
25	Chemo―and Enantioselective Oxidative αâ€Azidation of Carbonyl Compounds. Angewandte Chemie, 2020, 132, 17258-17265.	2.0	6
26	Chemo―and Enantioselective Oxidative αâ€Azidation of Carbonyl Compounds. Angewandte Chemie - International Edition, 2020, 59, 17110-17117.	13.8	34
27	Oneâ€Pot Tandem Michael Addition/Enantioselective Coniaâ€Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angewandte Chemie, 2020, 132, 16612.	2.0	1
28	Enantio―and Siteâ€Selective αâ€Fluorination of <i>N</i> â€Acyl 3,5â€Dimethylpyrazoles Catalyzed by Chiral π–Cu ^{II} Complexes. Angewandte Chemie - International Edition, 2020, 59, 17641-17647.	13.8	21
29	Cationic Iron(III) Salt as an Initiator for Radical Cationâ€induced [4+2] Cycloaddition. Asian Journal of Organic Chemistry, 2020, 9, 395-398.	2.7	8
30	Highly Active Chiral Dilithium(I) Binaphthyldisulfonate Catalysts for Enantio- and Chemoselective Strecker-Type Reactions. ACS Catalysis, 2019, 9, 8178-8186.	11.2	14
31	High-Performance Ammonium Hypoiodite/Oxone Catalysis for Enantioselective Oxidative Dearomatization of Arenols. ACS Catalysis, 2019, 9, 11619-11626.	11.2	50
32	Enantioselective [1,3] O-to-C rearrangement: dearomatization of alkyl 2-allyloxy/benzyloxy-1/3-naphthoates catalyzed by a chiral π–Cu(ii) complex. Chemical Science, 2019, 10, 2259-2263.	7.4	27
33	Structure and Reactivity of Aromatic Radical Cations Generated by FeCl ₃ . Journal of the American Chemical Society, 2019, 141, 1877-1881.	13.7	51
34	Ammonium Hypoiodite-catalyzed Oxidative Dearomatizative Azidation of Arenols. Chemistry Letters, 2019, 48, 353-356.	1.3	7
35	Tris(pentafluorophenyl)boraneâ€Assisted Chiral Phosphoric Acid Catalysts for Enantioselective Inverseâ€Electronâ€Demand Heteroâ€Dielsâ€Alder Reaction of α,βâ€Substituted Acroleins. Asian Journal of Organic Chemistry, 2019, 8, 1061-1066.	2.7	32
36	An enantioselective oxidative coupling reaction of 2-naphthol derivatives catalyzed by chiral diphosphine oxide–iron(<scp>ii</scp>) complexes. Chemical Communications, 2019, 55, 13677-13680.	4.1	38

#	Article	IF	CITATIONS
37	Regioselective Oxidative Chlorination of Arenols Using NaCl and Oxone. European Journal of Organic Chemistry, 2019, 2019, 27-31.	2.4	21
38	The <i>ortho</i> -substituent on 2,4-bis(trifluoromethyl)phenylboronic acid catalyzed dehydrative condensation between carboxylic acids and amines. Chemical Communications, 2018, 54, 5410-5413.	4.1	71
39	Boron Tribromideâ€Assisted Chiral Phosphoric Acid Catalysts for Enantioselective [2+2] Cycloaddition. Chemistry - an Asian Journal, 2018, 13, 2373-2377.	3.3	27
40	Synthesis of 1,1′â€Spirobiindaneâ€₹,7′â€Disulfonic Acid and Disulfonimide: Application for Catalytic Asymmetric Aminalization. Chemistry - an Asian Journal, 2018, 13, 2378-2381.	3.3	22
41	Metal-free transesterification catalyzed by tetramethylammonium methyl carbonate. Green Chemistry, 2018, 20, 1193-1198.	9.0	32
42	Enantioselective Halo-oxy- and Halo-azacyclizations Induced by Chiral Amidophosphate Catalysts and Halo-Lewis Acids. Journal of the American Chemical Society, 2018, 140, 6039-6043.	13.7	66
43	Enantioselective Aza-Friedel–Crafts Reaction of Indoles with Ketimines Catalyzed by Chiral Potassium Binaphthyldisulfonates. ACS Catalysis, 2018, 8, 349-353.	11.2	42
44	Chiral Supramolecular U-Shaped Catalysts Induce the Multiselective Diels–Alder Reaction of Propargyl Aldehyde. Journal of the American Chemical Society, 2018, 140, 16253-16263.	13.7	34
45	Enantioselective aza-Friedel–Crafts reaction of furan with α-ketimino esters induced by a conjugated double hydrogen bond network of chiral bis(phosphoric acid) catalysts. Chemical Science, 2018, 9, 6361-6367.	7.4	56
46	Pentamethylcyclopentadienyl rhodium(III)–chiral disulfonate hybrid catalysis for enantioselective C–H bond functionalization. Nature Catalysis, 2018, 1, 585-591.	34.4	127
47	Chiral Pyrophosphoric Acid Catalysts for the para-Selective and Enantioselective Aza-Friedel–Crafts Reaction of Phenols. Synthesis, 2018, 50, 4577-4590.	2.3	9
48	Thiourea–I ₂ as Lewis Base–Lewis Acid Cooperative Catalysts for Iodochlorination of Alkene with In Situ-Generated I–Cl. ACS Catalysis, 2018, 8, 6362-6366.	11.2	29
49	Asymmetric Total Synthesis of (â^')-Maldoxin, a Common Biosynthetic Ancestor of the Chloropupukeananin Family. Organic Letters, 2018, 20, 3919-3922.	4.6	20
50	4,5â€Dimethylâ€2â€lodoxybenzenesulfonic Acid Catalyzed Siteâ€Selective Oxidation of 2â€Substituted Phenols 1,2â€Quinols. Angewandte Chemie - International Edition, 2017, 56, 3956-3960.	to 13.8	57
51	4,5â€Dimethylâ€2â€Iodoxybenzenesulfonic Acid Catalyzed Siteâ€Selective Oxidation of 2â€Substituted Phenols 1,2â€Quinols. Angewandte Chemie, 2017, 129, 4014-4018.	to 2.0	15
52	Design of Boronic Acid–Base Complexes as Reusable Homogeneous Catalysts in Dehydrative Condensations between Carboxylic Acids and Amines. Asian Journal of Organic Chemistry, 2017, 6, 1191-1194.	2.7	22
53	Enantioselective Cycloaddition of Styrenes with Aldimines Catalyzed by a Chiral Magnesium Potassium Binaphthyldisulfonate Cluster as a Chiral Brnsted Acid Catalyst. Journal of the American Chemical Society, 2017, 139, 8424-8427.	13.7	41
54	Enantioselective Synthesis of Masked Benzoquinones Using Designer Chiral Hypervalent Organoiodine(III) Catalysis. ACS Catalysis, 2017, 7, 872-876.	11,2	105

#	Article	IF	Citations
55	Selenium–lodine Cooperative Catalyst for Chlorocyclization of Tryptamine Derivatives. Organic Letters, 2017, 19, 5525-5528.	4.6	33
56	Enantioselective Conjugate Hydrocyanation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated <i>N</i> -Acylpyrroles Catalyzed by Chiral Lithium(I) Phosphoryl Phenoxide. ACS Catalysis, 2017, 7, 6686-6690.	11.2	20
57	Chiral Hypervalent Organoiodine-Catalyzed Enantioselective Oxidative Spirolactonization of Naphthol Derivatives. Journal of Organic Chemistry, 2017, 82, 11946-11953.	3.2	63
58	Ammonium Hypoiodite-Catalyzed Peroxidative Dearomatization of Phenols. Heterocycles, 2017, 95, 1132.	0.7	15
59	Design of High Performance Catalysts Based on Acid-Base Combination Chemistry. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 98-110.	0.1	1
60	Enantioselective Cyanosilylation of Ketones with Lithium(I) Dicyanotrimethylsilicate(IV) Catalyzed by a Chiral Lithium(I) Phosphoryl Phenoxide. Angewandte Chemie, 2016, 128, 4089-4093.	2.0	31
61	Enantioselective Cyanosilylation of Ketones with Lithium(I) Dicyanotrimethylsilicate(IV) Catalyzed by a Chiral Lithium(I) Phosphoryl Phenoxide. Angewandte Chemie - International Edition, 2016, 55, 4021-4025.	13.8	42
62	Lewis Acids. ACS Symposium Series, 2016, , 27-66.	0.5	9
63	Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions. Angewandte Chemie - International Edition, 2016, 55, 413-417.	13.8	163
64	Regioselective 1,4- and 1,6-Conjugate Additions of Grignard Reagent-Derived Organozinc(II)ates to Polyconjugated Esters. Organic Letters, 2016, 18, 4462-4465.	4.6	11
65	Chiral Ammonium Hypoiodite Salt-catalyzed Enantioselective Oxidative Cycloetherification to 2-Acyl Tetrahydrofurans. Chemistry Letters, 2016, 45, 353-355.	1.3	22
66	Enantioselective bromocyclization of 2-geranylphenols induced by chiral phosphite–urea bifunctional catalysts. Chemical Communications, 2016, 52, 6068-6071.	4.1	32
67	Rýcktitelbild: Enantioselective Cyanosilylation of Ketones with Lithium(I) Dicyanotrimethylsilicate(IV) Catalyzed by a Chiral Lithium(I) Phosphoryl Phenoxide (Angew. Chem. 12/2016). Angewandte Chemie, 2016, 128, 4172-4172.	2.0	0
68	Remote Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acid Catalysts for the Enantioselective Diels–Alder Reaction. Synlett, 2016, 27, 564-570.	1.8	12
69	Enantioselective Diels–Alder Reaction Induced by Chiral Supramolecular Lewis Acid Catalysts Based on CN···B and PO···B Coordination Bonds. Synlett, 2016, 27, 1061-1067.	1.8	15
70	Boronic acid–DMAPO cooperative catalysis for dehydrative condensation between carboxylic acids and amines. Chemical Science, 2016, 7, 1276-1280.	7.4	113
71	Practical Oxidative Dearomatization of Phenols with Sodium Hypochlorite Pentahydrate. Chemistry Letters, 2015, 44, 381-383.	1.3	21
72	High-performance Hypoiodite/Hydrogen Peroxide Catalytic System for the Oxylactonization of Aliphatic Î ³ -Oxocarboxylic Acids. Chemistry Letters, 2015, 44, 387-389.	1.3	29

#	Article	IF	CITATIONS
73	Chiral Ammonium Hypoiodite-catalyzed Enantioselective Oxidative Dearomatization of 1-Naphthols Using Hydrogen Peroxide. Chemistry Letters, 2015, 44, 179-181.	1.3	48
74	Brønsted Acid/Lewis Base Hybrid Complexes. Topics in Organometallic Chemistry, 2015, , 91-120.	0.7	1
7 5	Câ€Selective and Diastereoselective Alkyl Addition to β,γâ€Alkynylâ€Î±â€imino Esters with Zinc(II)ate Complexes Angewandte Chemie, 2015, 127, 2745-2749.	2.0	16
76	Stereoselective Electrophilic Cyclization. Chemical Record, 2015, 15, 728-742.	5.8	66
77	Boronic Acid-Catalyzed Reactions of Carboxylic Acids. Topics in Organometallic Chemistry, 2015, , 243-270.	0.7	20
78	Enantioselective Cyano-Alkoxycarbonylation of α-Oxoesters Promoted by Brønsted Acid–Lewis Base Cooperative Catalysts. Organic Letters, 2015, 17, 6070-6073.	4.6	17
79	Câ€Selective and Diastereoselective Alkyl Addition to β,γâ€Alkynylâ€Î±â€imino Esters with Zinc(II)ate Complexes Angewandte Chemie - International Edition, 2015, 54, 2707-2711.	13.8	50
80	C- and N-Selective Grignard Addition Reactions of \hat{l}_{\pm} -Aldimino Esters in the Presence or Absence of Zinc(II) Chloride: Synthetic Applications to Optically Active Azacycles. Organic Letters, 2015, 17, 2412-2415.	4.6	22
81	Boron Tribromide-Assisted Chiral Phosphoric Acid Catalyst for a Highly Enantioselective Diels–Alder Reaction of 1,2-Dihydropyridines. Journal of the American Chemical Society, 2015, 137, 13472-13475.	13.7	80
82	Chapter 2. Alkali Metal (Li, Na, K)-based Catalysts. RSC Green Chemistry, 2015, , 15-48.	0.1	0
83	Selective Bromocyclization of 2â€Geranylphenols Promoted by Phosphite–Urea Cooperative Catalysts. Chirality, 2014, 26, 356-360.	2.6	21
84	Cooperative Activation with Chiral Nucleophilic Catalysts and <i>N</i> à€Haloimides: Enantioselective Iodolactonization of 4â€Arylmethylâ€4â€pentenoic Acids. Angewandte Chemie - International Edition, 2014, 53, 6974-6977.	13.8	122
85	Catalytic Enantioselective Inverse Electron Demand Heteroâ€Diels–Alder Reaction with Allylsilanes. Angewandte Chemie - International Edition, 2014, 53, 6131-6134.	13.8	59
86	Chiral 1,1′â€Binaphthylâ€2,2â€2â€Disulfonic Acid (BINSA) and Its Derivatives for Asymmetric Catalysis. Asian Journal of Organic Chemistry, 2014, 3, 352-365.	2.7	33
87	Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Imines with Propioloylpyrazoles Induced by Chiral $\ddot{l}\in \hat{a}\in \text{``Cation Catalysts.}$ Journal of the American Chemical Society, 2014, 136, 13198-13201.	13.7	73
88	An enantioselective Diels–Alder reaction of 1,2-dihydropyridines with α-acyloxyacroleins catalyzed by a chiral primary ammonium salt. Chemical Communications, 2014, 50, 6357-6360.	4.1	21
89	High-turnover hypoiodite catalysis for asymmetric synthesis of tocopherols. Science, 2014, 345, 291-294.	12.6	165
90	"Phosphite–urea―cooperative high-turnover catalysts for the highly selective bromocyclization of homogeranylarenes. Chemical Science, 2013, 4, 4181.	7.4	57

#	Article	IF	CITATIONS
91	Synthesis of Optically Pure 3,3′-Diaryl Binaphthyl Disulfonic Acids ⟨i⟩via⟨ i⟩ Stepwise N–S Bond Cleavage. Journal of Organic Chemistry, 2013, 78, 10405-10413.	3.2	20
92	Hydrogen Bonding and Alcohol Effects in Asymmetric Hypervalent Iodine Catalysis: Enantioselective Oxidative Dearomatization of Phenols. Angewandte Chemie - International Edition, 2013, 52, 9215-9218.	13.8	210
93	Enantioselective Cyanoethoxycarbonylation of Isatins Promoted by a Lewis Base–Brønsted Acid Cooperative Catalyst. Angewandte Chemie - International Edition, 2013, 52, 8299-8303.	13.8	46
94	Chiral Supramolecular Magnesium(II) Binaphtholate Catalysts for the Enantioselective Direct Mannichâ€Type Reaction and Heteroâ€Dielsâ€"Alder Reaction. Asian Journal of Organic Chemistry, 2013, 2, 952-956.	2.7	20
95	Lanthanum(iii) catalysts for highly efficient and chemoselective transesterification. Chemical Communications, 2013, 49, 1983.	4.1	51
96	Baeyer–Villiger Oxidation Using Hydrogen Peroxide. ACS Catalysis, 2013, 3, 513-520.	11.2	91
97	Chiral Magnesium(II) Binaphtholates as Cooperative BrÃ,nsted/Lewis Acid–Base Catalysts for the Highly Enantioselective Addition of Phosphorus Nucleophiles to î±,î²â€Unsaturated Esters and Ketones. Angewandte Chemie - International Edition, 2013, 52, 4549-4553.	13.8	127
98	Primary Alkylboronic Acids as Highly Active Catalysts for the Dehydrative Amide Condensation of α-Hydroxycarboxylic Acids. Organic Letters, 2013, 15, 3654-3657.	4.6	76
99	Kinetic Resolution of Racemic Carboxylic Acids through Asymmetric Protolactonization Promoted by Chiral Phosphonous Acid Diester. Organic Letters, 2013, 15, 2838-2841.	4.6	42
100	Titelbild: Chiral Magnesium(II) Binaphtholates as Cooperative BrÃ,nsted/Lewis Acid-Base Catalysts for the Highly Enantioselective Addition of Phosphorus Nucleophiles to \hat{l}_{\pm},\hat{l}^2 -Unsaturated Esters and Ketones (Angew. Chem. 17/2013). Angewandte Chemie, 2013, 125, 4591-4591.	2.0	0
101	IBS-Catalyzed Regioselective Oxidation of Phenols to 1,2-Quinones with Oxone®. Molecules, 2012, 17, 8604-8616.	3.8	64
102	<i>N,N</i> -Diarylammonium Pyrosulfate as a Highly Effective Reverse Micelle-Type Catalyst for Hydrolysis of Esters. Organic Letters, 2012, 14, 3194-3197.	4.6	23
103	Enantioselective direct aminalization with primary carboxamides catalyzed by chiral ammonium $1,1\hat{a}\in^2$ -binaphthyl-2, $2\hat{a}\in^2$ -disulfonates. Chemical Communications, 2012, 48, 4986.	4.1	36
104	Enantioselective Diels–Alder Reaction of α-(Acylthio)acroleins: A New Entry to Sulfur-Containing Chiral Quaternary Carbons. Organic Letters, 2012, 14, 2972-2975.	4.6	26
105	αâ€Heterosubstituted βâ€Alkylacroleins as Useful Multisubstituted Dienophiles for Enantioselective Diels–Alder Reactions. Asian Journal of Organic Chemistry, 2012, 1, 133-137.	2.7	4
106	Baeyer–Villiger Oxidation and Oxidative Cascade Reactions with Aqueous Hydrogen Peroxide Catalyzed by Lipophilic Li[B(C ₆ F ₅) ₄] and Ca[B(C ₆ F ₅] ₂ . Angewandte Chemie - International Edition, 2012, 51, 9093-9096.	13.8	40
107	In situ generated "lanthanum(iii) nitrate alkoxide―as a highly active and nearly neutral transesterification catalyst. Chemical Communications, 2012, 48, 9465.	4.1	25
108	Hydrophobic <i>N,N-</i> Diarylammonium Pyrosulfates as Dehydrative Condensation Catalysts under Aqueous Conditions. Organic Letters, 2012, 14, 30-33.	4.6	33

7

#	Article	IF	CITATIONS
109	Conformationally-Flexible Chiral Hypervalent Organoiodine Catalysts for Enantioselective Oxidative Transformations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1116-1122.	0.1	47
110	Conformationally flexible chiral supramolecular catalysts for enantioselective Diels–Alder reactions with anomalous endo/exo selectivities. Chemical Communications, 2012, 48, 4273.	4.1	63
111	Catalysis with Inâ€Situâ€Generated (Hypo)iodite Ions for Oxidative Coupling Reactions. ChemCatChem, 2012, 4, 177-185.	3.7	264
112	Asymmetric Cu(<scp>ii</scp>) catalyses for cycloaddition reactions based on π–cation or n–cation interactions. Chemical Society Reviews, 2011, 40, 163-172.	38.1	51
113	Chiral Lewis Base-Assisted BrÃ, nsted Acid (LBBA)-Catalyzed Enantioselective Cyclization of 2-Geranylphenols. Organic Letters, 2011, 13, 3130-3133.	4.6	61
114	Lanthanum(III) Isopropoxide Catalyzed Chemoselective Transesterification of Dimethyl Carbonate and Methyl Carbamates. Organic Letters, 2011, 13, 430-433.	4.6	46
115	Catalytic enantioselective alkyl and aryl addition to aldehydes and ketones with organozinc reagents derived from alkyl Grignard reagents or arylboronic acids. Catalysis Science and Technology, 2011, 1, 1149.	4.1	55
116	Ligand-Assisted Rate Acceleration in Lanthanum(III) Isopropoxide Catalyzed Transesterification of Carboxylic Esters. Organic Letters, 2011, 13, 426-429.	4.6	71
117	Intramolecular Dehydrative Condensation of Dicarboxylic Acids with $Br\tilde{A}_{_{3}}$ nsted Base-Assisted Boronic Acid Catalysts. Australian Journal of Chemistry, 2011, 64, 1458.	0.9	31
118	$Br\tilde{A}_{,n}$ nsted Base-Assisted Boronic Acid Catalysis for the Dehydrative Intramolecular Condensation of Dicarboxylic Acids. Organic Letters, 2011, 13, 892-895.	4.6	64
119	Desymmetrization of <i>meso</i> â€Clycerol Derivatives Induced by <scp>L</scp> â€Histidineâ€Derived Acylation Catalysts. Advanced Synthesis and Catalysis, 2011, 353, 1938-1942.	4.3	19
120	Inâ€Situ Generated (Hypo)lodite Catalysts for the Direct αâ€Oxyacylation of Carbonyl Compounds with Carboxylic Acids. Angewandte Chemie - International Edition, 2011, 50, 5331-5334.	13.8	325
121	Enantioselective Diels–Alder Reactions with Anomalous <i>endo</i> / <i>exo</i> Selectivities Using Conformationally Flexible Chiral Supramolecular Catalysts. Angewandte Chemie - International Edition, 2011, 50, 12189-12192.	13.8	62
122	Commercially available neat organozincs as highly reactive reagents for catalytic enantioselective addition to ketones and aldehydes under solvent free conditions. Tetrahedron, 2011, 67, 4417-4424.	1.9	39
123	Enantioselective Friedel-Crafts Aminoalkylation Catalyzed by Chiral Ammonium 1,1′-Binaphthyl-2,2′-disulfonates. Synlett, 2011, 2011, 1247-1250.	1.8	11
124	Nucleophilic Phosphine-Catalyzed Iodocyclization of Isoprenoids Bearing an Oxygen Terminal Group. Heterocycles, 2010, 82, 249.	0.7	15
125	Organoammonium Salt-Catalyzed Enantioselective Cycloaddition Reactions with $\hat{l}\pm$ -(Acyloxy)- or $\hat{l}\pm$ -Diacylaminoacroleins. Bulletin of the Chemical Society of Japan, 2010, 83, 313-322.	3.2	18
126	Zinc(II)-Catalyzed Addition of Grignard Reagents to Ketones. Journal of Organic Chemistry, 2010, 75, 5008-5016.	3.2	112

#	Article	IF	CITATIONS
127	Bromineâ€Catalyzed Aerobic Oxidation of Alcohols. Chemistry - an Asian Journal, 2010, 5, 456-460.	3.3	38
128	Titelbild: Enantioselective Kita Oxidative Spirolactonization Catalyzed by Inâ€Situ Generated Chiral Hypervalent Iodine(III) Species (Angew. Chem. 12/2010). Angewandte Chemie, 2010, 122, 2113-2113.	2.0	2
129	Titelbild: Which Is the Actual Catalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate? (Angew.) Tj ETQq1 10.	.784314 rg 2.0	gBT /Over <mark>l</mark> o
130	Enantioselective Kita Oxidative Spirolactonization Catalyzed by Inâ€Situ Generated Chiral Hypervalent Iodine(III) Species. Angewandte Chemie - International Edition, 2010, 49, 2175-2177.	13.8	412
131	Cover Picture: Enantioselective Kita Oxidative Spirolactonization Catalyzed by Inâ€Situ Generated Chiral Hypervalent Iodine(III) Species (Angew. Chem. Int. Ed. 12/2010). Angewandte Chemie - International Edition, 2010, 49, 2069-2069.	13.8	2
132	Which Is the Actual Catalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate?. Angewandte Chemie - International Edition, 2010, 49, 3823-3826.	13.8	222
133	Cover Picture: Which Is the Actual Catalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate? (Angew. Chem. Int. Ed. 22/2010). Angewandte Chemie - International Edition, 2010, 49, 3699-3699.	13.8	O
134	Chiral hypervalent iodine-catalyzed enantioselective oxidative Kita spirolactonization of 1-naphthol derivatives and one-pot diastereo-selective oxidation to epoxyspirolactones. Tetrahedron, 2010, 66, 5841-5851.	1.9	180
135	Synthesis of chiral 3,3′-disubstituted 1,1′-binaphthyl-2,2′-disulfonic acids. Tetrahedron: Asymmetry, 2010, 21, 1311-1314.	1.8	17
136	Highly Chemoselective Stoichiometric Alkylation of Ketones with Grignard Reagent Derived Zinc(II) Ate Complexes. Synlett, 2010, 2010, 321-324.	1.8	13
137	A Concise Synthesis of (S)-(+)-Ginnol Based on Catalytic Enantioselective Addition of Commercially Unavailable Di(n-alkyl)zinc to Aldehydes and Ketones. Synlett, 2010, 2010, 2024-2028.	1.8	7
138	Highly Practical BINOL-Derived Acid-Base Combined Salt Catalysts for the Asymmetric Direct Mannich-Type Reaction. Synthesis, 2010, 2010, 3785-3801.	2.3	14
139	Chiral Lithium(I) Binaphtholate Salts for the Enantioselective Direct Mannich-Type Reaction with a Change of Syn/Anti and Absolute Stereochemistry. Journal of the American Chemical Society, 2010, 132, 56-57.	13.7	114
140	Zinc(ii)-catalyzed Grignard additions to ketones with RMgBr and RMgI. Chemical Communications, 2010, 46, 2674.	4.1	54
141	Catalytic Enantioselective 1,3-Dipolar Cycloadditions of Nitrones with Propioloylpyrazoles and Acryloylpyrazoles Induced by Chiral ĭ∈-Cation Catalysts. Journal of the American Chemical Society, 2010, 132, 15550-15552.	13.7	72
142	Quaternary Ammonium (Hypo)iodite Catalysis for Enantioselective Oxidative Cycloetherification. Science, 2010, 328, 1376-1379.	12.6	393
143	Magnesium(II)-Binaphtholate as a Practical Chiral Catalyst for the Enantioselective Direct Mannich-Type Reaction with Malonates. Organic Letters, 2010, 12, 3502-3505.	4.6	92
144	3-Pyrroline-1-carbonyl (Pyroc) Group: A Removable Protecting Group for the Kinetic Resolution of Racemic Carboxylic Acids and Alcohols through Catalytic Asymmetric Acylation. Synlett, 2009, 2009, 1647-1650.	1.8	3

#	Article	IF	CITATIONS
145	Dehydrative condensation catalyses. Tetrahedron, 2009, 65, 1085-1109.	1.9	181
146	Dehydrative cyclization of serine, threonine, and cysteine residues catalyzed by molybdenum(VI) oxo compounds. Tetrahedron, 2009, 65, 2102-2109.	1.9	26
147	Highly efficient synthesis of functionalized tertiary alcohols catalyzed by potassium alkoxide–crown ether complexes. Tetrahedron Letters, 2009, 50, 3171-3174.	1.4	27
148	Hypervalent iodine-catalyzed oxylactonization of ketocarboxylic acids to ketolactones. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3848-3851.	2.2	71
149	2-lodoxybenzenesulfonic Acid as an Extremely Active Catalyst for the Selective Oxidation of Alcohols to Aldehydes, Ketones, Carboxylic Acids, and Enones with Oxone. Journal of the American Chemical Society, 2009, 131, 251-262.	13.7	281
150	Hypervalent iodine-mediated oxidation of alcohols. Chemical Communications, 2009, , 2086.	4.1	457
151	Chiral Lanthanum(III)-Binaphthyldisulfonate Complexes for Catalytic Enantioselective Strecker Reaction. Organic Letters, 2009, 11, 2321-2324.	4.6	67
152	Rational Design of Highly Effective Asymmetric Dielsâ^'Alder Catalysts Bearing 4,4′-Sulfonamidomethyl Groups. Journal of the American Chemical Society, 2009, 131, 17762-17764.	13.7	72
153	IBS-Catalyzed Oxidative Rearrangement of Tertiary Allylic Alcohols to Enones with Oxone. Organic Letters, 2009, 11, 3470-3473.	4.6	85
154	Rational design of dynamic ammonium salt catalysts towards more flexible and selective function. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 290-313.	3.8	27
155	Catalytic enantioselective organozinc addition toward optically active tertiary alcohol synthesis. Chemical Record, 2008, 8, 143-155.	5.8	64
156	Chiral Lithium Salts of Phosphoric Acids as Lewis Acid–Base Conjugate Catalysts for the Enantioselective Cyanosilylation of Ketones. Advanced Synthesis and Catalysis, 2008, 350, 1776-1780.	4.3	105
157	Asymmetric intramolecular Cannizzaro reaction of anhydrous phenylglyoxal. Journal of Fluorine Chemistry, 2008, 129, 994-997.	1.7	35
158	Enantioselective alkynylation to aldimines catalyzed by chiral 2,2′-di(2-aminoaryloxy)-1,1′-binaphthyl-copper(I) complexes. Tetrahedron Letters, 2008, 49, 379-382.	1.4	31
159	Open-air and solvent-free ester condensation catalyzed by sulfonic acids. Tetrahedron Letters, 2008, 49, 5017-5020.	1.4	35
160	Kinetic Resolution of Racemic Carboxylic Acids by an <scp>I</scp> -Histidine-Derived Sulfonamide-Induced Enantioselective Esterification Reaction. Organic Letters, 2008, 10, 3191-3194.	4.6	46
161	Organocatalytic Enantioselective Dielsâ^'Alder Reaction of Dienes with α-(<i>N</i> , <i>N</i> -Diacylamino)acroleins. Organic Letters, 2008, 10, 2893-2896.	4.6	61
162	Pyridinium 1,1′-Binaphthyl-2,2′-disulfonates as Highly Effective Chiral BrÃ,nsted Acidâ^'Base Combined Salt Catalysts for Enantioselective Mannich-Type Reaction. Journal of the American Chemical Society, 2008, 130, 16858-16860.	13.7	168

#	Article	IF	CITATIONS
163	Convergent total syntheses of fluvibactin and vibriobactin using molybdenum(vi) oxide-catalyzed dehydrative cyclization as a key step. Chemical Communications, 2008, , 3561.	4.1	27
164	Zwitterionic Salts as Mild Organocatalysts for Transesterification. Organic Letters, 2008, 10, 2187-2190.	4.6	51
165	Catalytic Enantioselective $[2+4]$ and $[2+2]$ Cycloaddition Reactions with Propiolamides. Journal of the American Chemical Society, 2008, 130, 7532-7533.	13.7	111
166	Rate-Accelerating Effect by the Neighboring-Group Participation of Protecting Groups in the Dehydrative Cyclization of 1,3,5-Triketones. Organic Letters, 2008, 10, 2569-2572.	4.6	13
167	Selective Synthesis of Cyclic Phosphoric Acid Diesters through Oxorhenium(VII)-Catalyzed Dehydrative Condensation of Phosphoric Acid with Alcohols. Heterocycles, 2008, 76, 657.	0.7	8
168	Recent Progress in the Catalytic Synthesis of Tertiary Alcohols from Ketones with Organometallic Reagents. Synthesis, 2008, 2008, 1647-1675.	2.3	55
169	Development of Highly Efficient Acid-Base Combination Catalyses Based on Carbon-Metal Bonds Activation in Organometallic Reagents. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 564-577.	0.1	2
170	Design of Highly Functional Small-Molecule Catalysts and Related Reactions Based on Acid-Base Combination Chemistry. Synlett, 2007, 2007, 0686-0703.	1.8	70
171	Recent Progress in Selective Additions of Organometal Reagents to Carbonyl Compounds. Current Organic Chemistry, 2007, 11, 127-157.	1.6	104
172	Perrhenic Acid-Catalyzed Dehydration from Primary Amides, Aldoximes, N-Monoacylureas, and \hat{l} ±-Substituted Ketoximes to Nitrile Compounds. Bulletin of the Chemical Society of Japan, 2007, 80, 400-406.	3.2	38
173	Widely Useful DMAP-Catalyzed Esterification under Auxiliary Base- and Solvent-Free Conditions. Journal of the American Chemical Society, 2007, 129, 14775-14779.	13.7	214
174	Bulky phosphazenium cation catalysis for dehydrative condensation of phosphoric acid with alcohols. Green Chemistry, 2007, 9, 1166.	9.0	22
175	Rational Design of Minimal Artificial Diels–Alderases Based on the Copper(II) Cation–Aromatic π Attractive Interaction. Accounts of Chemical Research, 2007, 40, 1049-1055.	15.6	82
176	Highly Active Chiral Phosphoramideâ^'Zn(II) Complexes as Conjugate Acidâ^'Base Catalysts for Enantioselective Organozinc Addition to Ketones. Organic Letters, 2007, 9, 4535-4538.	4.6	104
177	Sodium Phenoxideâ^'Phosphine Oxides as Extremely Active Lewis Base Catalysts for the Mukaiyama Aldol Reaction with Ketones. Organic Letters, 2007, 9, 4527-4530.	4.6	73
178	Enantioselective $[2+2]$ Cycloaddition of Unactivated Alkenes with $\hat{l}\pm$ -Acyloxyacroleins Catalyzed by Chiral Organoammonium Salts. Journal of the American Chemical Society, 2007, 129, 8930-8931.	13.7	124
179	The Oxorhenium(VII)-Catalyzed Direct Condensation of Phosphoric Acid with an Alcohol. Angewandte Chemie - International Edition, 2007, 46, 1423-1426.	13.8	43
180	Dehydrative Cyclization Catalyzed by the Combination of Molybdenum(VI) Oxides and Benzoic Acids: First Synthesis of the Antitumour Substance BE-70016. Advanced Synthesis and Catalysis, 2007, 349, 551-555.	4.3	26

#	Article	IF	Citations
181	Catalytic Synthesis of Peptideâ€Derived Thiazolines and Oxazolines using Bis(quinolinolato)dioxomolybdenum(VI) Complexes. Advanced Synthesis and Catalysis, 2007, 349, 1641-1646.	4.3	33
182	Kinetic resolution of racemic alcohols catalyzed by minimal artificial acylases derived from l-histidine. Tetrahedron, 2007, 63, 6191-6203.	1.9	49
183	New boron(III)-catalyzed amide and ester condensation reactions. Tetrahedron, 2007, 63, 8645-8657.	1.9	155
184	Enantioselective conjugate addition of dialkylzinc to cyclic enones catalyzed by chiral binaphthyldiamine–copper(I) complexes. Tetrahedron Letters, 2007, 48, 8590-8594.	1.4	19
185	Direct ester condensation catalyzed by bulky diarylammonium pentafluorobenzenesulfonates. Nature Protocols, 2007, 2, 1746-1751.	12.0	23
186	Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature, 2007, 445, 900-903.	27.8	386
187	Unusual Rate Acceleration in BrÃ,nsted Acid Catalyzed Dehydration Reactions: Local Hydrophobic Environment in AggregatedN-(2,6-diphenylphenyl)-N-mesitylammonium Pentafluorobenzenesulfonates. Chemistry - an Asian Journal, 2007, 2, 477-483.	3.3	27
188	Dimeric scandium(III) and monomeric lanthanide(III) complexes with perfluoropropane-1,3-disulfonates as counter anions for Lewis acid catalysis. Journal of Organometallic Chemistry, 2007, 692, 569-578.	1.8	9
189	3,3â€~-Diphosphoryl-1,1â€~-bi-2-naphtholâ^'Zn(II) Complexes as Conjugate Acidâ^'Base Catalysts for Enantioselective Dialkylzinc Addition to Aldehydes. Journal of Organic Chemistry, 2006, 71, 6474-6484.	3.2	96
190	4,5,6,7-Tetrachlorobenzo[d][1,3,2]dioxaborol- 2-ol as an Effective Catalyst for the Amide Condensation of Sterically Demanding Carboxylic Acids. Organic Letters, 2006, 8, 1431-1434.	4.6	104
191	Design of Brønsted Acid-Assisted Chiral Brønsted Acid Catalyst Bearing a Bis(triflyl)methyl Group for a Mannich-Type Reaction. Organic Letters, 2006, 8, 3175-3178.	4.6	142
192	Design of a Small-Molecule Catalyst Using Intramolecular Cationâ^'Ï€ Interactions for Enantioselective Dielsâ^'Alder and Mukaiyamaâ^'Michael Reactions: l-DOPA-Derived Monopeptide·Cu(II) Complex. Organic Letters, 2006, 8, 1921-1924.	4.6	82
193	Chiral 1,1â€ ⁻ -Binaphthyl-2,2â€ ⁻ -diammonium Salt Catalysts for the Enantioselective Dielsâ ⁻ 'Alder Reaction with α-Acyloxyacroleins. Organic Letters, 2006, 8, 2229-2232.	4.6	119
194	Development of Environmentally Benign Catalytic Dehydration Process. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 651-663.	0.1	2
195	Design of Chiral Macrocyclic Complexes Based on trans-Chelation ofn:nMetal–BidentateP,N-orN,N-Ligands. Chemistry Letters, 2006, 35, 172-173.	1.3	24
196	Organoboronic Acids and Organoborinic Acids as Brønsted-Lewis Acid Catalysts in Organic Synthesis. , 2006, , 377-409.		3
197	Bulky diarylammonium arenesulfonates as mild and extremely active dehydrative ester condensation catalysts. Tetrahedron, 2006, 62, 422-433.	1.9	44
198	Highly Efficient Alkylation to Ketones and Aldimines with Grignard Reagents Catalyzed by Zinc(II) Chloride. Journal of the American Chemical Society, 2006, 128, 9998-9999.	13.7	203

#	Article	IF	CITATIONS
199	Crucial Role of the Conjugate Base for Silyl Lewis Acid Induced Mukaiyama Aldol Reactions. European Journal of Organic Chemistry, 2006, 2006, 1837-1844.	2.4	41
200	Enantioselective Diels–Alder Reaction of α-Acyloxyacroleins Catalyzed by Chiral 1,1′-Binaphthyl-2,2′-diammonium Salts. Advanced Synthesis and Catalysis, 2006, 348, 2457-2465.	4.3	86
201	Iron(III)â€"Zirconium(IV) Combined Salt Immobilized onN-(Polystyrylbutyl)pyridinium Triflylimide as a Reusable Catalyst for a Dehydrative Esterification Reaction. Advanced Synthesis and Catalysis, 2006, 348, 1505-1510.	4.3	28
202	Enantioselective Dialkylzinc Addition to Aldehydes Catalyzed by Chiral Zn(II)-BINOLates Bearing Phosphonates and Phosphoramides in the 3,3′-Positions. Synlett, 2006, 2006, 1762-1764.	1.8	12
203	Catalytic Diastereoselective Polycyclization of Homo(polyprenyl)arene Analogues Bearing Terminal Siloxyvinyl Groups. Organic Letters, 2006, 8, 5649-5652.	4.6	37
204	Facile Synthesis of Aryl- and Alkyl-bis(trifluoromethylsulfonyl)methanes. Bulletin of the Chemical Society of Japan, 2005, 78, 1401-1410.	3.2	60
205	Biomimetic synthesis of acid-sensitive (\hat{a})- and (+)-caparrapi oxides, (\hat{a})- and (+)-8-epicaparrapi oxides, and (+)-dysifragin induced by artificial cyclases. Bioorganic and Medicinal Chemistry, 2005, 13, 5055-5065.	3.0	19
206	Synthesis of (all-rac)-?-Tocopherol in Supercritical Carbon Dioxide: Tuning of the Product Selectivity in Batch and Continuous-Flow Reactors. Advanced Synthesis and Catalysis, 2005, 347, 220-224.	4.3	25
207	Zr(IV)Fe(III), Ga(III), and Sn(IV) Binary Metal Complexes as Synergistic and Reusable Esterification Catalysts. Advanced Synthesis and Catalysis, 2005, 347, 1337-1340.	4.3	31
208	Enantioselective Addition of Organozinc Reagents to Aldehydes Catalyzed by 3,3′-Bis(diphenylphosphinoyl)-BINOL. Advanced Synthesis and Catalysis, 2005, 347, 1561-1568.	4.3	49
209	Rational Design of an L-Histidine-Derived Minimal Artificial Acylase for the Kinetic Resolution of Racemic Alcohols ChemInform, 2005, 36, no.	0.0	0
210	Bulky Diarylammonium Arenesulfonates as Selective Esterification Catalysts ChemInform, 2005, 36, no.	0.0	0
211	Design of an Organocatalyst for the Enantioselective Diels—Alder Reaction with α-Acyloxyacroleins ChemInform, 2005, 36, no.	0.0	0
212	Bulky Diarylammonium Arenesulfonates as Selective Esterification Catalysts. Journal of the American Chemical Society, 2005, 127, 4168-4169.	13.7	116
213	N-Alkyl-4-boronopyridinium Salts as Thermally Stable and Reusable Amide Condensation Catalysts. Organic Letters, 2005, 7, 5043-5046.	4.6	94
214	Biomimetic Synthesis of Acid-Sensitive (â^')-Caparrapi Oxide and (+)-8-Epicaparrapi Oxide Induced by Artificial Cyclases. Organic Letters, 2005, 7, 1601-1604.	4.6	42
215	Molybdenum Oxides as Highly Effective Dehydrative Cyclization Catalysts for the Synthesis of Oxazolines and Thiazolines. Organic Letters, 2005, 7, 1971-1974.	4.6	97
216	Cyanuric Chloride as a Mild and Active Beckmann Rearrangement Catalyst. Journal of the American Chemical Society, 2005, 127, 11240-11241.	13.7	202

#	Article	IF	Citations
217	N-Alkyl-4-boronopyridinium Halides versus Boric Acid as Catalysts for the Esterification of α-Hydroxycarboxylic Acids. Organic Letters, 2005, 7, 5047-5050.	4.6	7 5
218	Chiral Lithium Binaphtholate Aqua Complex as a Highly Effective Asymmetric Catalyst for Cyanohydrin Synthesis. Journal of the American Chemical Society, 2005, 127, 10776-10777.	13.7	117
219	Selective Synthesis of Phosphate Monoesters by Dehydrative Condensation of Phosphoric Acid and Alcohols Promoted by Nucleophilic Bases. Organic Letters, 2005, 7, 1999-2002.	4.6	54
220	Design of an Organocatalyst for the Enantioselective Dielsâ $^{\circ}$ Alder Reaction with α-Acyloxyacroleins. Journal of the American Chemical Society, 2005, 127, 10504-10505.	13.7	217
221	Highly Alkyl-Selective Addition to Ketones with Magnesium Ate Complexes Derived from Grignard Reagents. Organic Letters, 2005, 7, 573-576.	4.6	86
222	Asymmetric Vinylogous Direct Aldol Reaction Using Aluminum Tris[2,6-bis(4-alkylphenyl)phenoxide]. Synlett, 2004, 2004, 732-734.	1.8	4
223	Arylboronic Acid-Catalyzed Direct Condensation of Carboxylic Acids with Ureas. Synlett, 2004, 2004, 1355-1358.	1.8	10
224	Asymmetric Direct Aldol Reaction Assisted by Water and a Proline-Derived Tetrazole Catalyst. Angewandte Chemie - International Edition, 2004, 43, 1983-1986.	13.8	542
225	Water-Tolerant and Reusable Catalysts for Direct Ester Condensation between Equimolar Amounts of Carboxylic Acids and Alcohols. Advanced Synthesis and Catalysis, 2004, 346, 1275-1279.	4.3	56
226	Synthesis of Carboxamides by LDA-Catalyzed Hallerâ€"Bauer and Cannizzaro Reactions ChemInform, 2004, 35, no.	0.0	0
227	Rational Design of anl-Histidine-Derived Minimal Artificial Acylase for the Kinetic Resolution of Racemic Alcohols. Journal of the American Chemical Society, 2004, 126, 12212-12213.	13.7	107
228	A New Artificial Cyclase for Polyprenoids: Enantioselective Total Synthesis of (â^')-Chromazonarol, (+)-8-epi-Puupehedione, and (â^')-11â€~-Deoxytaondiol Methyl Ether. Journal of the American Chemical Society, 2004, 126, 11122-11123.	13.7	165
229	Tin(IV) Chloride-Chiral Pyrogallol Derivatives as New Lewis Acid-Assisted Chiral BrÃ,nsted Acids for Enantioselective Polyene Cyclization. Organic Letters, 2004, 6, 2551-2554.	4.6	57
230	Synthesis of Carboxamides by LDA-Catalyzed Hallerâ^'Bauer and Cannizzaro Reactions. Organic Letters, 2004, 6, 1983-1986.	4.6	113
231	New bulky chiral Lewis acid catalyst: 3,3?-di(2-mesitylethynyl)binaphthol-titanium(iv) complex. Chirality, 2003, 15, 135-138.	2.6	9
232	Trimethylsilyl Pentafluorophenylbis(trifluoromethanesulfonyl)methide as a Super Lewis Acid Catalyst for the Condensation of Trimethylhydroquinone with Isophytol. Angewandte Chemie - International Edition, 2003, 42, 5731-5733.	13.8	98
233	The Crystallographic Structure of a Lewis Acid-Assisted Chiral BrÃ, nsted Acid as an Enantioselective Protonation Reagent for Silyl Enol Ethers. Journal of the American Chemical Society, 2003, 125, 24-25.	13.7	113
234	Aldol Synthesis with an Aqueous Solution of Formalin. Synlett, 2003, 2003, 2219-2221.	1.8	5

#	Article	IF	CITATIONS
235	A New Method for the Preparation of Aluminum and Titanium Tris(2,6-diphenylphenoxide) Reagents and Their Application in Organic Synthesis. Chemistry Letters, 2003, 32, 1006-1007.	1.3	4
236	Single-Pass Reaction Column System with Super Brønsted Acid-loaded Resin. Synlett, 2002, 2002, 1296-1298.	1.8	6
237	A Fluorous Super BrÃ,nsted Acid Catalyst: Application to Fluorous Catalysis without Fluorous Solvents. Synlett, 2002, 2002, 1299-1301.	1.8	10
238	Lewis Acid-Activated Chiral Leaving Group:Â Enantioselective Electrophilic Addition to Prochiral Olefins. Journal of Organic Chemistry, 2002, 67, 5124-5137.	3.2	25
239	Enantio- and Diastereoselective Stepwise Cyclization of Polyprenoids Induced by Chiral and Achiral LBAs. A New Entry to (â^')-Ambrox, (+)-Podocarpa-8,11,13-triene Diterpenoids, and (â^')-Tetracyclic Polyprenoid of Sedimentary Origin. Journal of the American Chemical Society, 2002, 124, 3647-3655.	13.7	124
240	Crucial role of the ligand of silyl Lewis acid in the Mukaiyama aldol reactionElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b2/b203838b/. Chemical Communications, 2002, , 1564-1565.	4.1	52
241	Rhenium(VII) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. Angewandte Chemie, 2002, 114, 3109.	2.0	57
242	Rhenium(VII) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. Angewandte Chemie - International Edition, 2002, 41, 2983.	13.8	196
243	Chiral Proton Donor Reagents: Tin Tetrachloride?Coordinated Optically Active Binaphthol Derivatives. Chemical Record, 2002, 2, 177-188.	5. 8	59
244	Direct ester condensation from a 1:1 mixture of carboxylic acids and alcohols catalyzed by hafnium(IV) or zirconium(IV) salts. Tetrahedron, 2002, 58, 8179-8188.	1.9	179
245	Arylboron Catalysts for Stereoselective Organic Transformations. ACS Symposium Series, 2001, , 108-121.	0.5	1
246	Enantioselective Biomimetic Cyclization of Homo(polyprenyl)arenes. A New Entry to $(+)$ -Podpcarpa-8,11,13-triene Diterpenoids and (\hat{a}^{-}) -Tetracyclic Polyprenoid of Sedimentary Origin. Journal of the American Chemical Society, 2001, 123, 1505-1506.	13.7	102
247	Polystyrene-Bound Tetrafluorophenylbis(triflyl)methane as an Organic-Solvent-Swellable and Strong BrAnsted Acid Catalyst The authors thank Mr. Shoichi Kondo for the single-crystal X-ray analysis. Sodium triflate was generously donated by Central Glass Co., Ltd., Japan. The authors also acknowledge Dr. Yuko Wasada and Dr. Manabu Kubota for their helpful discussions on the	13.8	132
248	Asymmetric Synthesis of (R)-Limonene and (S)-Cembrene-A by an Intramolecular Cyclization Reaction Using a Chiral Leaving Group. Synlett, 2001, 2001, 1113-1116.	1.8	10
249	A Green Method for the Selective Esterification of Primary Alcohols in the Presence of Secondary Alcohols or Aromatic Alcohols. Synlett, 2001, 2001, 1117-1120.	1.8	37
250	A High Yield Procedure for the Me3SiNTf2-Induced Carbon-Carbon Bond-Forming Reactions of Silyl Nucleophiles with Carbonyl Compounds: The Importance of Addition Order and Solvent Effects. Synlett, 2001, 2001, 1851-1854.	1.8	109
251	3,5-Bis(perfluorodecyl)phenylboronic Acid as an Easily Recyclable Direct Amide Condensation Catalyst. Synlett, 2001, 2001, 1371-1374.	1.8	137
252	Design of Multinuclear Chiral Organoaluminum Complexes with $(\langle i \rangle R \langle i \rangle)$ -Binaphthol Derivatives. Synlett, 2001, 2001, 0394-0396.	1.8	30

#	Article	IF	CITATIONS
253	Polystyrene-Bound Tetrafluorophenylbis(triflyi)methane as an Organic-Solvent-Swellable and Strong BrAnsted Acid Catalyst The authors thank Mr. Shoichi Kondo for the single-crystal X-ray analysis. Sodium triflate was generously donated by Central Glass Co., Ltd., Japan. The authors also acknowledge Dr. Yuko Wasada and Dr. Manabu Kubota for their helpful discussions on the	13.8	2
254	Removal of Palladium(II) from Aqueous and Organic Solutions by Polystyrene-bound Trimercaptotriazine. Chemistry Letters, 2000, 29, 1218-1219.	1.3	25
255	Pyrolysis of benzenediazonium bis(trifluoromethanesulfonyl)methide. Journal of Fluorine Chemistry, 2000, 106, 139-141.	1.7	10
256	Direct Polycondensation of Carboxylic Acids and Amines Catalyzed by 3,4,5-Trifluorophenylboronic Acid. Macromolecules, 2000, 33, 3511-3513.	4.8	85
257	Enantioselective Biomimetic Cyclization of Isoprenoids Using Lewis Acid-Assisted Chiral Brønsted Acids: Abnormal Claisen Rearrangements and Successive Cyclizations. Journal of the American Chemical Society, 2000, 122, 8131-8140.	13.7	126
258	Scope and Limitations of ChiralB-[3,5-Bis(trifluoromethyl)phenyl]oxazaborolidine Catalyst for Use in the Mukaiyama Aldol Reaction. Journal of Organic Chemistry, 2000, 65, 9125-9128.	3.2	66
259	Enantioselective Protonation of Silyl Enol Ethers and Ketene Disilyl Acetals with Lewis Acid-Assisted Chiral BrĄ̃nsted Acids:Â Reaction Scope and Mechanistic Insights. Journal of the American Chemical Society, 2000, 122, 8120-8130.	13.7	106
260	A New and Extremely Active Corey's Chiral Oxazaborolidine Catalyst. Synlett, 1999, 1999, 1283-1285.	1.8	21
261	Arylboron Compounds as Acid Catalysts in Organic Synthetic Transformations. European Journal of Organic Chemistry, 1999, 1999, 527-538.	2.4	207
262	The First Enantioselective Biomimetic Cyclization of Polyprenoids. Journal of the American Chemical Society, 1999, 121, 4906-4907.	13.7	129
263	Chiral SEM Etherâ^'Tin Tetrachloride as an Enantioselective Hydroxymethylating Reagent for Silyl Enol Ethers:  γ-Effect of Silicon. Journal of the American Chemical Society, 1999, 121, 7720-7721.	13.7	18
264	Synthesis of C3 Symmetric, Optically Active Triamidoamine and Protetraazaphosphatrane. Journal of Organic Chemistry, 1998, 63, 5692-5695.	3.2	31
265	Highly Regio- and Stereoselective Isomerization of Silyl Enol Ethers Catalyzed by LBA. A Remarkable Enantiomer Discrimination of Chiral LBA. Journal of Organic Chemistry, 1998, 63, 6444-6445.	3.2	39
266	Design of BrÃ,nsted Acid-Assisted Chiral Lewis Acid (BLA) Catalysts for Highly Enantioselective Dielsâ ⁻ Alder Reactions. Journal of the American Chemical Society, 1998, 120, 6920-6930.	13.7	166
267	Rational Design of a New Chiral Lewis Acid Catalyst for Enantioselective Diels-Alder Reaction: Optically Active 2-Dichloroboryl-1,1′-binaphthyl. Synlett, 1998, 1998, 1053-1056.	1.8	28
268	Metal-Templated Macrolactamization of Triamino and Tetramino Esters. Facile Synthesis of Macrocyclic Spermidine and Spermine Alkaloids, (S)-(+)-Dihydroperiphylline, (Â \pm)-Buchnerine, (Â \pm)-Verbaskine, and (Â \pm)-Verbascenine. Bulletin of the Chemical Society of Japan, 1998, 71, 1221-1230.	3.2	51
269	Recent Developments of Arylboron Compounds as Lewis Acid Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 45-53.	0.1	0
270	First Enantioselective Protonation of Prochiral Allyltrimethyltins Using Lewis Acid Assisted Chiral BrÃ, nsted Acids. Synlett, 1997, 1997, 758-760.	1.8	16

#	Article	IF	Citations
271	Diarylborinic Acids as Efficient Catalysts for Selective Dehydration of Aldols. Synlett, 1997, 1997, 597-599.	1.8	54
272	Bis(pentafluorophenyl)borinic Acid as a Highly Effective Oppenauer Oxidation Catalyst for Allylic and Benzylic Alcohols. Journal of Organic Chemistry, 1997, 62, 5664-5665.	3.2	68
273	First Enantioselective Catalytic Dielsâ-'Alder Reaction of Dienes and Acetylenic Aldehydes:Â Experimental and Theoretical Evidence for the Predominance of Exo-Transition Structure. Journal of Organic Chemistry, 1997, 62, 3026-3027.	3.2	76
274	First Example of a Highly Enantioselective Catalytic Protonation of Silyl Enol Ethers Using a Novel Lewis Acid-Assisted BrÃ, nsted Acid System. Journal of the American Chemical Society, 1996, 118, 12854-12855.	13.7	132
275	3,4,5-Trifluorobenzeneboronic Acid as an Extremely Active Amidation Catalyst. Journal of Organic Chemistry, 1996, 61, 4196-4197.	3.2	430
276	A New Powerful and Practical BLA Catalyst for Highly Enantioselective Dielsâ^'Alder Reaction:  An Extreme Acceleration of Reaction Rate by Brønsted Acid. Journal of the American Chemical Society, 1996, 118, 3049-3050.	13.7	112
277	Antimony-Templated Macrolactamization of Tetraamino Esters. Facile Synthesis of Macrocyclic Spermine Alkaloids, $(\hat{A}\pm)$ -Buchnerine, $(\hat{A}\pm)$ -Verbacine, $(\hat{A}\pm)$ -Verbaskine, and $(\hat{A}\pm)$ -Verbascenine. Journal of the American Chemical Society, 1996, 118, 1569-1570.	13.7	84
278	Scandium Trifluoromethanesulfonate as an Extremely Active Lewis Acid Catalyst in Acylation of Alcohols with Acid Anhydrides and Mixed Anhydridesâ€. Journal of Organic Chemistry, 1996, 61, 4560-4567.	3.2	415
279	Stereospecific annulation of hydroxy vinyl ethers. Synthetic application to polyfunctionalized cyclic compounds. Tetrahedron, 1996, 52, 7297-7320.	1.9	14
280	Scandium Trifluoromethanesulfonimide and Scandium Trifluoromethanesulfonate as Extremely Active Acetalization Catalysts. Synlett, 1996, 1996, 839-841.	1.8	121
281	A New Scandium Complex as an Extremely Active Acylation Catalyst. Synlett, 1996, 1996, 265-266.	1.8	126
282	Tris(pentafluorophenyl)boron as an Efficient, Air Stable, and Water Tolerant Lewis Acid Catalyst. Bulletin of the Chemical Society of Japan, 1995, 68, 1721-1730.	3.2	111
283	Tris(pentafluorophenyl)boron as an Efficient Catalyst in the Stereoselective Rearrangement of Epoxides. Synlett, 1995, 1995, 721-722.	1.8	51
284	A Concise Synthesis of (+)-(S)-Dihydroperiphylline. Synlett, 1995, 1995, 41-42.	1.8	19
285	Scandium Trifluoromethanesulfonate as an Extremely Active Acylation Catalyst. Journal of the American Chemical Society, 1995, 117, 4413-4414.	13.7	251
286	Designer Lewis Acids for Selective Organic Synthesis Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1994, 52, 912-922.	0.1	8
287	Tris(pentafluorophenyl)boron as an Efficient Catalyst in the Aldol-Type Reaction of Ketene Silyl Acetals with Imines. Synlett, 1994, 1994, 963-964.	1.8	57
288	Asymmetric hetero Diels-Alder reaction catalyzed by stable and easily prepared CAB catalysts. Tetrahedron, 1994, 50, 979-988.	1.9	51

#	Article	IF	Citations
289	A New Chiral BLA Promoter for Asymmetric Aza Diels-Alder and Aldol-Type Reactions of Imines. Journal of the American Chemical Society, 1994, 116, 10520-10524.	13.7	197
290	Bronsted Acid Assisted Chiral Lewis Acid (BLA) Catalyst for Asymmetric Diels-Alder Reaction. Journal of the American Chemical Society, 1994, 116, 1561-1562.	13.7	179
291	Lewis Acid Assisted Chiral Bronsted Acid for Enantioselective Protonation of Silyl Enol Ethers and Ketene Bis(trialkylsilyl) Acetals. Journal of the American Chemical Society, 1994, 116, 11179-11180.	13.7	139
292	Catalytic enantioselective Diels-Alder reactions using titanium complexes of cis-N-sulfonyl-2-amino-1-indanols. Tetrahedron Letters, 1993, 34, 8399-8402.	1.4	31
293	An extremely simple, convenient, and selective method for acetylating primary alcohols in the presence of secondary alcohols. Journal of Organic Chemistry, 1993, 58, 3791-3793.	3.2	188
294	Highly diastereoselective acetal cleavages using novel reagents prepared from organoaluminum and pentafluorophenol. Journal of the American Chemical Society, 1993, 115, 10695-10704.	13.7	57
295	Enantioselective Diels-Alder reaction of .alphabromoalpha.,.betaenals with dienes under catalysis by CAB. Journal of Organic Chemistry, 1993, 58, 6917-6919.	3.2	52
296	Mechanistic studies of a CAB-catalyzed asymmetric Diels-Alder reaction. Journal of the American Chemical Society, 1993, 115, 10412-10413.	13.7	87
297	Catalytic asymmetric allylation using a chiral (acyloxy)borane complex as a versatile Lewis acid catalyst. Journal of the American Chemical Society, 1993, 115, 11490-11495.	13.7	156
298	Catalytic Asymmetric Aldol-Type Reactions Using a Chiral (Acyloxy)borane Complex. Bulletin of the Chemical Society of Japan, 1993, 66, 3483-3491.	3.2	58
299	Highly enantioselective catalytic Diels-Alder addition promoted by a chiral bis(oxazoline)-magnesium complex. Tetrahedron Letters, 1992, 33, 6807-6810.	1.4	258
300	Highly selective acetal cleavage using new organoaluminum reagents. Journal of the American Chemical Society, 1991, 113, 7074-7075.	13.7	43
301	Acyclic stereoselection. 52. On the mechanism of Lewis acid mediated nucleophilic substitution reactions of acetals. Journal of Organic Chemistry, 1990, 55, 6107-6115.	3.2	97
302	Stereoselective reduction of acetals. A method for reductive generation of heterocyclic ring systems. Tetrahedron, 1990, 46, 4595-4612.	1.9	83
303	Acyclic stereoselection. 50. New stereoselective propanal/propanoic acid synthons for aldol reactions. Journal of Organic Chemistry, 1990, 55, 1114-1117.	3.2	27
304	Stereospecific cyclization of vinyl ether alcohols. Facile synthesis of (-)-lardolure. Journal of Organic Chemistry, 1990, 55, 5814-5815.	3.2	62
305	Chiral Aryl Grignard Reagents-Generation and Reactions with Carbonyl Compounds. Bulletin of the Chemical Society of Japan, 1989, 62, 3736-3738.	3.2	27
306	Stereoselective reduction of bicyclic acetals. A method for reductive generation of heterocyclic ring systems. Tetrahedron Letters, 1987, 28, 6613-6616.	1.4	33

#	Article	IF	CITATIONS
307	Reductive cleavages of homochiral acetals: inversion of the stereoselectivity. Tetrahedron, 1987, 43, 755-764.	1.9	52
308	Reductive cleavages of \hat{l}_{\pm} , \hat{l}^2 -alkynyl acetals. New route to optically pure propargylic alcohols. Tetrahedron Letters, 1986, 27, 983-986.	1.4	51
309	Reductive cleavages of chiral acetals using Lewis acid-hydride system. Tetrahedron Letters, 1986, 27, 987-990.	1.4	56
310	Chiral Brønsted/Lewis Acid Catalysts. , 0, , 359-381.		3