
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187986/publications.pdf Version: 2024-02-01

KAZIIAKI ISHIHADA

#	Article	IF	CITATIONS
1	Asymmetric Direct Aldol Reaction Assisted by Water and a Proline-Derived Tetrazole Catalyst. Angewandte Chemie - International Edition, 2004, 43, 1983-1986.	13.8	542
2	Hypervalent iodine-mediated oxidation of alcohols. Chemical Communications, 2009, , 2086.	4.1	457
3	3,4,5-Trifluorobenzeneboronic Acid as an Extremely Active Amidation Catalyst. Journal of Organic Chemistry, 1996, 61, 4196-4197.	3.2	430
4	Scandium Trifluoromethanesulfonate as an Extremely Active Lewis Acid Catalyst in Acylation of Alcohols with Acid Anhydrides and Mixed Anhydridesâ€. Journal of Organic Chemistry, 1996, 61, 4560-4567.	3.2	415
5	Enantioselective Kita Oxidative Spirolactonization Catalyzed by Inâ€Situ Generated Chiral Hypervalent Iodine(III) Species. Angewandte Chemie - International Edition, 2010, 49, 2175-2177.	13.8	412
6	Quaternary Ammonium (Hypo)iodite Catalysis for Enantioselective Oxidative Cycloetherification. Science, 2010, 328, 1376-1379.	12.6	393
7	Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature, 2007, 445, 900-903.	27.8	386
8	Inâ€Situ Generated (Hypo)Iodite Catalysts for the Direct αâ€Oxyacylation of Carbonyl Compounds with Carboxylic Acids. Angewandte Chemie - International Edition, 2011, 50, 5331-5334.	13.8	325
9	2-lodoxybenzenesulfonic Acid as an Extremely Active Catalyst for the Selective Oxidation of Alcohols to Aldehydes, Ketones, Carboxylic Acids, and Enones with Oxone. Journal of the American Chemical Society, 2009, 131, 251-262.	13.7	281
10	Catalysis with Inâ€Situâ€Generated (Hypo)iodite Ions for Oxidative Coupling Reactions. ChemCatChem, 2012, 4, 177-185.	3.7	264
11	Highly enantioselective catalytic Diels-Alder addition promoted by a chiral bis(oxazoline)-magnesium complex. Tetrahedron Letters, 1992, 33, 6807-6810.	1.4	258
12	Scandium Trifluoromethanesulfonate as an Extremely Active Acylation Catalyst. Journal of the American Chemical Society, 1995, 117, 4413-4414.	13.7	251
13	Which Is the Actual Catalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate?. Angewandte Chemie - International Edition, 2010, 49, 3823-3826.	13.8	222
14	Design of an Organocatalyst for the Enantioselective Dielsâ^'Alder Reaction with α-Acyloxyacroleins. Journal of the American Chemical Society, 2005, 127, 10504-10505.	13.7	217
15	Widely Useful DMAP-Catalyzed Esterification under Auxiliary Base- and Solvent-Free Conditions. Journal of the American Chemical Society, 2007, 129, 14775-14779.	13.7	214
16	Hydrogen Bonding and Alcohol Effects in Asymmetric Hypervalent Iodine Catalysis: Enantioselective Oxidative Dearomatization of Phenols. Angewandte Chemie - International Edition, 2013, 52, 9215-9218.	13.8	210
17	Arylboron Compounds as Acid Catalysts in Organic Synthetic Transformations. European Journal of Organic Chemistry, 1999, 1999, 527-538.	2.4	207
18	Highly Efficient Alkylation to Ketones and Aldimines with Grignard Reagents Catalyzed by Zinc(II) Chloride. Journal of the American Chemical Society, 2006, 128, 9998-9999.	13.7	203

#	Article	IF	CITATIONS
19	Cyanuric Chloride as a Mild and Active Beckmann Rearrangement Catalyst. Journal of the American Chemical Society, 2005, 127, 11240-11241.	13.7	202
20	A New Chiral BLA Promoter for Asymmetric Aza Diels-Alder and Aldol-Type Reactions of Imines. Journal of the American Chemical Society, 1994, 116, 10520-10524.	13.7	197
21	Rhenium(VII) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. Angewandte Chemie - International Edition, 2002, 41, 2983.	13.8	196
22	An extremely simple, convenient, and selective method for acetylating primary alcohols in the presence of secondary alcohols. Journal of Organic Chemistry, 1993, 58, 3791-3793.	3.2	188
23	Dehydrative condensation catalyses. Tetrahedron, 2009, 65, 1085-1109.	1.9	181
24	Chiral hypervalent iodine-catalyzed enantioselective oxidative Kita spirolactonization of 1-naphthol derivatives and one-pot diastereo-selective oxidation to epoxyspirolactones. Tetrahedron, 2010, 66, 5841-5851.	1.9	180
25	Bronsted Acid Assisted Chiral Lewis Acid (BLA) Catalyst for Asymmetric Diels-Alder Reaction. Journal of the American Chemical Society, 1994, 116, 1561-1562.	13.7	179
26	Direct ester condensation from a 1:1 mixture of carboxylic acids and alcohols catalyzed by hafnium(IV) or zirconium(IV) salts. Tetrahedron, 2002, 58, 8179-8188.	1.9	179
27	Pyridinium 1,1′-Binaphthyl-2,2′-disulfonates as Highly Effective Chiral BrÃ,nsted Acidâ^'Base Combined Salt Catalysts for Enantioselective Mannich-Type Reaction. Journal of the American Chemical Society, 2008, 130, 16858-16860.	13.7	168
28	Design of BrÃ,nsted Acid-Assisted Chiral Lewis Acid (BLA) Catalysts for Highly Enantioselective Dielsâ^'Alder Reactions. Journal of the American Chemical Society, 1998, 120, 6920-6930.	13.7	166
29	A New Artificial Cyclase for Polyprenoids:Â Enantioselective Total Synthesis of (â^)-Chromazonarol, (+)-8-epi-Puupehedione, and (â^)-11â€-Deoxytaondiol Methyl Ether. Journal of the American Chemical Society, 2004, 126, 11122-11123.	13.7	165
30	High-turnover hypoiodite catalysis for asymmetric synthesis of tocopherols. Science, 2014, 345, 291-294.	12.6	165
31	Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions. Angewandte Chemie - International Edition, 2016, 55, 413-417.	13.8	163
32	Catalytic asymmetric allylation using a chiral (acyloxy)borane complex as a versatile Lewis acid catalyst. Journal of the American Chemical Society, 1993, 115, 11490-11495.	13.7	156
33	New boron(III)-catalyzed amide and ester condensation reactions. Tetrahedron, 2007, 63, 8645-8657.	1.9	155
34	Design of BrÃ,nsted Acid-Assisted Chiral BrÃ,nsted Acid Catalyst Bearing a Bis(triflyl)methyl Group for a Mannich-Type Reaction. Organic Letters, 2006, 8, 3175-3178.	4.6	142
35	Lewis Acid Assisted Chiral Bronsted Acid for Enantioselective Protonation of Silyl Enol Ethers and Ketene Bis(trialkylsilyl) Acetals. Journal of the American Chemical Society, 1994, 116, 11179-11180.	13.7	139
36	3,5-Bis(perfluorodecyl)phenylboronic Acid as an Easily Recyclable Direct Amide Condensation Catalyst. Synlett, 2001, 2001, 1371-1374.	1.8	137

3

#	Article	IF	CITATIONS
37	First Example of a Highly Enantioselective Catalytic Protonation of Silyl Enol Ethers Using a Novel Lewis Acid-Assisted BrÃ,nsted Acid System. Journal of the American Chemical Society, 1996, 118, 12854-12855.	13.7	132
38	Polystyrene-Bound Tetrafluorophenylbis(triflyl)methane as an Organic-Solvent-Swellable and Strong BrAnsted Acid Catalyst The authors thank Mr. Shoichi Kondo for the single-crystal X-ray analysis. Sodium triflate was generously donated by Central Glass Co., Ltd., Japan. The authors also acknowledge Dr. Yuko Wasada and Dr. Manabu Kubota for their helpful discussions on the theoretical calculations Angewandte Chemie - International Edition, 2001, 40, 4077.	13.8	132
39	The First Enantioselective Biomimetic Cyclization of Polyprenoids. Journal of the American Chemical Society, 1999, 121, 4906-4907.	13.7	129
40	Chiral Magnesium(II) Binaphtholates as Cooperative BrÃ,nsted/Lewis Acid–Base Catalysts for the Highly Enantioselective Addition of Phosphorus Nucleophiles to α,βâ€Unsaturated Esters and Ketones. Angewandte Chemie - International Edition, 2013, 52, 4549-4553.	13.8	127
41	Pentamethylcyclopentadienyl rhodium(III)–chiral disulfonate hybrid catalysis for enantioselective C–H bond functionalization. Nature Catalysis, 2018, 1, 585-591.	34.4	127
42	A New Scandium Complex as an Extremely Active Acylation Catalyst. Synlett, 1996, 1996, 265-266.	1.8	126
43	Enantioselective Biomimetic Cyclization of Isoprenoids Using Lewis Acid-Assisted Chiral BrÃ,nsted Acids:Â Abnormal Claisen Rearrangements and Successive Cyclizations. Journal of the American Chemical Society, 2000, 122, 8131-8140.	13.7	126
44	Enantio- and Diastereoselective Stepwise Cyclization of Polyprenoids Induced by Chiral and Achiral LBAs. A New Entry to (â^')-Ambrox, (+)-Podocarpa-8,11,13-triene Diterpenoids, and (â^')-Tetracyclic Polyprenoid of Sedimentary Origin. Journal of the American Chemical Society, 2002, 124, 3647-3655.	13.7	124
45	Enantioselective [2 + 2] Cycloaddition of Unactivated Alkenes with α-Acyloxyacroleins Catalyzed by Chiral Organoammonium Salts. Journal of the American Chemical Society, 2007, 129, 8930-8931.	13.7	124
46	Cooperative Activation with Chiral Nucleophilic Catalysts and <i>N</i> â€Haloimides: Enantioselective Iodolactonization of 4â€Arylmethylâ€4â€pentenoic Acids. Angewandte Chemie - International Edition, 2014, 53, 6974-6977.	13.8	122
47	Scandium Trifluoromethanesulfonimide and Scandium Trifluoromethanesulfonate as Extremely Active Acetalization Catalysts. Synlett, 1996, 1996, 839-841.	1.8	121
48	Chiral 1,1â€ [~] -Binaphthyl-2,2â€ [~] -diammonium Salt Catalysts for the Enantioselective Dielsâ^'Alder Reaction with α-Acyloxyacroleins. Organic Letters, 2006, 8, 2229-2232.	4.6	119
49	Chiral Lithium Binaphtholate Aqua Complex as a Highly Effective Asymmetric Catalyst for Cyanohydrin Synthesis. Journal of the American Chemical Society, 2005, 127, 10776-10777.	13.7	117
50	Bulky Diarylammonium Arenesulfonates as Selective Esterification Catalysts. Journal of the American Chemical Society, 2005, 127, 4168-4169.	13.7	116
51	Chiral Lithium(I) Binaphtholate Salts for the Enantioselective Direct Mannich-Type Reaction with a Change of Syn/Anti and Absolute Stereochemistry. Journal of the American Chemical Society, 2010, 132, 56-57.	13.7	114
52	The Crystallographic Structure of a Lewis Acid-Assisted Chiral BrÃ,nsted Acid as an Enantioselective Protonation Reagent for Silyl Enol Ethers. Journal of the American Chemical Society, 2003, 125, 24-25.	13.7	113
53	Synthesis of Carboxamides by LDA-Catalyzed Hallerâ~'Bauer and Cannizzaro Reactions. Organic Letters, 2004, 6, 1983-1986.	4.6	113
54	Boronic acid–DMAPO cooperative catalysis for dehydrative condensation between carboxylic acids and amines. Chemical Science, 2016, 7, 1276-1280.	7.4	113

#	Article	IF	CITATIONS
55	A New Powerful and Practical BLA Catalyst for Highly Enantioselective Dielsâ^'Alder Reaction:  An Extreme Acceleration of Reaction Rate by BrÃ,nsted Acid. Journal of the American Chemical Society, 1996, 118, 3049-3050.	13.7	112
56	Zinc(II)-Catalyzed Addition of Grignard Reagents to Ketones. Journal of Organic Chemistry, 2010, 75, 5008-5016.	3.2	112
57	Tris(pentafluorophenyl)boron as an Efficient, Air Stable, and Water Tolerant Lewis Acid Catalyst. Bulletin of the Chemical Society of Japan, 1995, 68, 1721-1730.	3.2	111
58	Catalytic Enantioselective [2 + 4] and [2 + 2] Cycloaddition Reactions with Propiolamides. Journal of the American Chemical Society, 2008, 130, 7532-7533.	13.7	111
59	A High Yield Procedure for the Me3SiNTf2-Induced Carbon-Carbon Bond-Forming Reactions of Silyl Nucleophiles with Carbonyl Compounds: The Importance of Addition Order and Solvent Effects. Synlett, 2001, 2001, 1851-1854.	1.8	109
60	Rational Design of anl-Histidine-Derived Minimal Artificial Acylase for the Kinetic Resolution of Racemic Alcohols. Journal of the American Chemical Society, 2004, 126, 12212-12213.	13.7	107
61	Enantioselective Protonation of Silyl Enol Ethers and Ketene Disilyl Acetals with Lewis Acid-Assisted Chiral BrÃ,nsted Acids:Â Reaction Scope and Mechanistic Insights. Journal of the American Chemical Society, 2000, 122, 8120-8130.	13.7	106
62	Chiral Lithium Salts of Phosphoric Acids as Lewis Acid–Base Conjugate Catalysts for the Enantioselective Cyanosilylation of Ketones. Advanced Synthesis and Catalysis, 2008, 350, 1776-1780.	4.3	105
63	Enantioselective Synthesis of Masked Benzoquinones Using Designer Chiral Hypervalent Organoiodine(III) Catalysis. ACS Catalysis, 2017, 7, 872-876.	11.2	105
64	4,5,6,7-Tetrachlorobenzo[d][1,3,2]dioxaborol- 2-ol as an Effective Catalyst for the Amide Condensation of Sterically Demanding Carboxylic Acids. Organic Letters, 2006, 8, 1431-1434.	4.6	104
65	Recent Progress in Selective Additions of Organometal Reagents to Carbonyl Compounds. Current Organic Chemistry, 2007, 11, 127-157.	1.6	104
66	Highly Active Chiral Phosphoramideâ^'Zn(II) Complexes as Conjugate Acidâ^'Base Catalysts for Enantioselective Organozinc Addition to Ketones. Organic Letters, 2007, 9, 4535-4538.	4.6	104
67	Enantioselective Biomimetic Cyclization of Homo(polyprenyl)arenes. A New Entry to (+)-Podpcarpa-8,11,13-triene Diterpenoids and (â^')-Tetracyclic Polyprenoid of Sedimentary Origin. Journal of the American Chemical Society, 2001, 123, 1505-1506.	13.7	102
68	Trimethylsilyl Pentafluorophenylbis(trifluoromethanesulfonyl)methide as a Super Lewis Acid Catalyst for the Condensation of Trimethylhydroquinone with Isophytol. Angewandte Chemie - International Edition, 2003, 42, 5731-5733.	13.8	98
69	Acyclic stereoselection. 52. On the mechanism of Lewis acid mediated nucleophilic substitution reactions of acetals. Journal of Organic Chemistry, 1990, 55, 6107-6115.	3.2	97
70	Molybdenum Oxides as Highly Effective Dehydrative Cyclization Catalysts for the Synthesis of Oxazolines and Thiazolines. Organic Letters, 2005, 7, 1971-1974.	4.6	97
71	3,3â€~-Diphosphoryl-1,1â€~-bi-2-naphtholâ^'Zn(II) Complexes as Conjugate Acidâ^'Base Catalysts for Enantioselective Dialkylzinc Addition to Aldehydes. Journal of Organic Chemistry, 2006, 71, 6474-6484.	3.2	96
72	N-Alkyl-4-boronopyridinium Salts as Thermally Stable and Reusable Amide Condensation Catalysts. Organic Letters, 2005, 7, 5043-5046.	4.6	94

#	Article	IF	CITATIONS
73	Magnesium(II)-Binaphtholate as a Practical Chiral Catalyst for the Enantioselective Direct Mannich-Type Reaction with Malonates. Organic Letters, 2010, 12, 3502-3505.	4.6	92
74	Baeyer–Villiger Oxidation Using Hydrogen Peroxide. ACS Catalysis, 2013, 3, 513-520.	11.2	91
75	Mechanistic studies of a CAB-catalyzed asymmetric Diels-Alder reaction. Journal of the American Chemical Society, 1993, 115, 10412-10413.	13.7	87
76	Highly Alkyl-Selective Addition to Ketones with Magnesium Ate Complexes Derived from Grignard Reagents. Organic Letters, 2005, 7, 573-576.	4.6	86
77	Enantioselective Diels–Alder Reaction of α-Acyloxyacroleins Catalyzed by Chiral 1,1′-Binaphthyl-2,2′-diammonium Salts. Advanced Synthesis and Catalysis, 2006, 348, 2457-2465.	4.3	86
78	Direct Polycondensation of Carboxylic Acids and Amines Catalyzed by 3,4,5-Trifluorophenylboronic Acid. Macromolecules, 2000, 33, 3511-3513.	4.8	85
79	IBS-Catalyzed Oxidative Rearrangement of Tertiary Allylic Alcohols to Enones with Oxone. Organic Letters, 2009, 11, 3470-3473.	4.6	85
80	Antimony-Templated Macrolactamization of Tetraamino Esters. Facile Synthesis of Macrocyclic Spermine Alkaloids, (±)-Buchnerine, (±)-Verbacine, (±)-Verbaskine, and (±)-Verbascenine. Journal of the American Chemical Society, 1996, 118, 1569-1570.	13.7	84
81	Stereoselective reduction of acetals. A method for reductive generation of heterocyclic ring systems. Tetrahedron, 1990, 46, 4595-4612.	1.9	83
82	Design of a Small-Molecule Catalyst Using Intramolecular Cationâ^'Ï€ Interactions for Enantioselective Dielsâ^'Alder and Mukaiyamaâ^'Michael Reactions: l-DOPA-Derived Monopeptide·Cu(II) Complex. Organic Letters, 2006, 8, 1921-1924.	4.6	82
83	Rational Design of Minimal Artificial Diels–Alderases Based on the Copper(II) Cation–Aromatic π Attractive Interaction. Accounts of Chemical Research, 2007, 40, 1049-1055.	15.6	82
84	Boron Tribromide-Assisted Chiral Phosphoric Acid Catalyst for a Highly Enantioselective Diels–Alder Reaction of 1,2-Dihydropyridines. Journal of the American Chemical Society, 2015, 137, 13472-13475.	13.7	80
85	First Enantioselective Catalytic Dielsâ~'Alder Reaction of Dienes and Acetylenic Aldehydes:Â Experimental and Theoretical Evidence for the Predominance ofExo-Transition Structure. Journal of Organic Chemistry, 1997, 62, 3026-3027.	3.2	76
86	Primary Alkylboronic Acids as Highly Active Catalysts for the Dehydrative Amide Condensation of α-Hydroxycarboxylic Acids. Organic Letters, 2013, 15, 3654-3657.	4.6	76
87	N-Alkyl-4-boronopyridinium Halides versus Boric Acid as Catalysts for the Esterification of α-Hydroxycarboxylic Acids. Organic Letters, 2005, 7, 5047-5050.	4.6	75
88	Sodium Phenoxideâ^'Phosphine Oxides as Extremely Active Lewis Base Catalysts for the Mukaiyama Aldol Reaction with Ketones. Organic Letters, 2007, 9, 4527-4530.	4.6	73
89	Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Imines with Propioloylpyrazoles Induced by Chiral π–Cation Catalysts. Journal of the American Chemical Society, 2014, 136, 13198-13201.	13.7	73
90	Rational Design of Highly Effective Asymmetric Dielsâ^'Alder Catalysts Bearing 4,4′-Sulfonamidomethyl Groups. Journal of the American Chemical Society, 2009, 131, 17762-17764.	13.7	72

#	Article	IF	CITATIONS
91	Catalytic Enantioselective 1,3-Dipolar Cycloadditions of Nitrones with Propioloylpyrazoles and Acryloylpyrazoles Induced by Chiral π-Cation Catalysts. Journal of the American Chemical Society, 2010, 132, 15550-15552.	13.7	72
92	Hypervalent iodine-catalyzed oxylactonization of ketocarboxylic acids to ketolactones. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3848-3851.	2.2	71
93	Ligand-Assisted Rate Acceleration in Lanthanum(III) Isopropoxide Catalyzed Transesterification of Carboxylic Esters. Organic Letters, 2011, 13, 426-429.	4.6	71
94	The <i>ortho</i> -substituent on 2,4-bis(trifluoromethyl)phenylboronic acid catalyzed dehydrative condensation between carboxylic acids and amines. Chemical Communications, 2018, 54, 5410-5413.	4.1	71
95	Design of Highly Functional Small-Molecule Catalysts and Related Reactions Based on Acid-Base Combination Chemistry. Synlett, 2007, 2007, 0686-0703.	1.8	70
96	Chemoselective oxidative generation of ortho-quinone methides and tandem transformations. Nature Chemistry, 2020, 12, 353-362.	13.6	69
97	Bis(pentafluorophenyl)borinic Acid as a Highly Effective Oppenauer Oxidation Catalyst for Allylic and Benzylic Alcohols. Journal of Organic Chemistry, 1997, 62, 5664-5665.	3.2	68
98	Chiral Lanthanum(III)-Binaphthyldisulfonate Complexes for Catalytic Enantioselective Strecker Reaction. Organic Letters, 2009, 11, 2321-2324.	4.6	67
99	Scope and Limitations of ChiralB-[3,5-Bis(trifluoromethyl)phenyl]oxazaborolidine Catalyst for Use in the Mukaiyama Aldol Reaction. Journal of Organic Chemistry, 2000, 65, 9125-9128.	3.2	66
100	Stereoselective Electrophilic Cyclization. Chemical Record, 2015, 15, 728-742.	5.8	66
101	Enantioselective Halo-oxy- and Halo-azacyclizations Induced by Chiral Amidophosphate Catalysts and Halo-Lewis Acids. Journal of the American Chemical Society, 2018, 140, 6039-6043.	13.7	66
102	Catalytic enantioselective organozinc addition toward optically active tertiary alcohol synthesis. Chemical Record, 2008, 8, 143-155.	5.8	64
103	BrÃ,nsted Base-Assisted Boronic Acid Catalysis for the Dehydrative Intramolecular Condensation of Dicarboxylic Acids. Organic Letters, 2011, 13, 892-895.	4.6	64
104	IBS-Catalyzed Regioselective Oxidation of Phenols to 1,2-Quinones with Oxone®. Molecules, 2012, 17, 8604-8616.	3.8	64
105	Conformationally flexible chiral supramolecular catalysts for enantioselective Diels–Alder reactions with anomalous endo/exo selectivities. Chemical Communications, 2012, 48, 4273.	4.1	63
106	Chiral Hypervalent Organoiodine-Catalyzed Enantioselective Oxidative Spirolactonization of Naphthol Derivatives. Journal of Organic Chemistry, 2017, 82, 11946-11953.	3.2	63
107	Stereospecific cyclization of vinyl ether alcohols. Facile synthesis of (-)-lardolure. Journal of Organic Chemistry, 1990, 55, 5814-5815.	3.2	62
108	Enantioselective Diels–Alder Reactions with Anomalous <i>endo</i> / <i>exo</i> Selectivities Using Conformationally Flexible Chiral Supramolecular Catalysts. Angewandte Chemie - International Edition, 2011, 50, 12189-12192.	13.8	62

#	Article	IF	CITATIONS
109	Organocatalytic Enantioselective Dielsâ^'Alder Reaction of Dienes with α-(<i>N</i> , <i>N</i> -Diacylamino)acroleins. Organic Letters, 2008, 10, 2893-2896.	4.6	61
110	Chiral Lewis Base-Assisted BrÃ,nsted Acid (LBBA)-Catalyzed Enantioselective Cyclization of 2-Geranylphenols. Organic Letters, 2011, 13, 3130-3133.	4.6	61
111	Facile Synthesis of Aryl- and Alkyl-bis(trifluoromethylsulfonyl)methanes. Bulletin of the Chemical Society of Japan, 2005, 78, 1401-1410.	3.2	60
112	Chiral Proton Donor Reagents: Tin Tetrachloride?Coordinated Optically Active Binaphthol Derivatives. Chemical Record, 2002, 2, 177-188.	5.8	59
113	Catalytic Enantioselective Inverse Electron Demand Heteroâ€Diels–Alder Reaction with Allylsilanes. Angewandte Chemie - International Edition, 2014, 53, 6131-6134.	13.8	59
114	Catalytic Asymmetric Aldol-Type Reactions Using a Chiral (Acyloxy)borane Complex. Bulletin of the Chemical Society of Japan, 1993, 66, 3483-3491.	3.2	58
115	Highly diastereoselective acetal cleavages using novel reagents prepared from organoaluminum and pentafluorophenol. Journal of the American Chemical Society, 1993, 115, 10695-10704.	13.7	57
116	Tris(pentafluorophenyl)boron as an Efficient Catalyst in the Aldol-Type Reaction of Ketene Silyl Acetals with Imines. Synlett, 1994, 1994, 963-964.	1.8	57
117	Rhenium(VII) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. Angewandte Chemie, 2002, 114, 3109.	2.0	57
118	Tin(IV) Chloride-Chiral Pyrogallol Derivatives as New Lewis Acid-Assisted Chiral BrÃ,nsted Acids for Enantioselective Polyene Cyclization. Organic Letters, 2004, 6, 2551-2554.	4.6	57
119	"Phosphite–urea―cooperative high-turnover catalysts for the highly selective bromocyclization of homogeranylarenes. Chemical Science, 2013, 4, 4181.	7.4	57
120	4,5â€Dimethylâ€2â€lodoxybenzenesulfonic Acid Catalyzed Siteâ€Selective Oxidation of 2â€Substituted Phenols 1,2â€Quinols. Angewandte Chemie - International Edition, 2017, 56, 3956-3960.	to 13.8	57
121	Reductive cleavages of chiral acetals using Lewis acid-hydride system. Tetrahedron Letters, 1986, 27, 987-990.	1.4	56
122	Water-Tolerant and Reusable Catalysts for Direct Ester Condensation between Equimolar Amounts of Carboxylic Acids and Alcohols. Advanced Synthesis and Catalysis, 2004, 346, 1275-1279.	4.3	56
123	Enantioselective aza-Friedel–Crafts reaction of furan with α-ketimino esters induced by a conjugated double hydrogen bond network of chiral bis(phosphoric acid) catalysts. Chemical Science, 2018, 9, 6361-6367.	7.4	56
124	Recent Progress in the Catalytic Synthesis of Tertiary Alcohols from Ketones with Organometallic Reagents. Synthesis, 2008, 2008, 1647-1675.	2.3	55
125	Catalytic enantioselective alkyl and aryl addition to aldehydes and ketones with organozinc reagents derived from alkyl Grignard reagents or arylboronic acids. Catalysis Science and Technology, 2011, 1, 1149.	4.1	55
126	Diarylborinic Acids as Efficient Catalysts for Selective Dehydration of Aldols. Synlett, 1997, 1997, 597-599.	1.8	54

#	Article	IF	CITATIONS
127	Selective Synthesis of Phosphate Monoesters by Dehydrative Condensation of Phosphoric Acid and Alcohols Promoted by Nucleophilic Bases. Organic Letters, 2005, 7, 1999-2002.	4.6	54
128	Zinc(ii)-catalyzed Grignard additions to ketones with RMgBr and RMgI. Chemical Communications, 2010, 46, 2674.	4.1	54
129	Reductive cleavages of homochiral acetals: inversion of the stereoselectivity. Tetrahedron, 1987, 43, 755-764.	1.9	52
130	Enantioselective Diels-Alder reaction of .alphabromoalpha.,.betaenals with dienes under catalysis by CAB. Journal of Organic Chemistry, 1993, 58, 6917-6919.	3.2	52
131	Crucial role of the ligand of silyl Lewis acid in the Mukaiyama aldol reactionElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b2/b203838b/. Chemical Communications, 2002, , 1564-1565.	4.1	52
132	Reductive cleavages of $\hat{1}_{\pm}, \hat{1}^2$ -alkynyl acetals. New route to optically pure propargylic alcohols. Tetrahedron Letters, 1986, 27, 983-986.	1.4	51
133	Asymmetric hetero Diels-Alder reaction catalyzed by stable and easily prepared CAB catalysts. Tetrahedron, 1994, 50, 979-988.	1.9	51
134	Tris(pentafluorophenyl)boron as an Efficient Catalyst in the Stereoselective Rearrangement of Epoxides. Synlett, 1995, 1995, 721-722.	1.8	51
135	Metal-Templated Macrolactamization of Triamino and Tetramino Esters. Facile Synthesis of Macrocyclic Spermidine and Spermine Alkaloids, (S)-(+)-Dihydroperiphylline, (±)-Buchnerine, (±)-Verbacine, (±)-Verbaskine, and (±)-Verbascenine. Bulletin of the Chemical Society of Japan, 1998, 71, 1221-1230.	3.2	51
136	Zwitterionic Salts as Mild Organocatalysts for Transesterification. Organic Letters, 2008, 10, 2187-2190.	4.6	51
137	Asymmetric Cu(<scp>ii</scp>) catalyses for cycloaddition reactions based on π–cation or n–cation interactions. Chemical Society Reviews, 2011, 40, 163-172.	38.1	51
138	Lanthanum(iii) catalysts for highly efficient and chemoselective transesterification. Chemical Communications, 2013, 49, 1983.	4.1	51
139	Structure and Reactivity of Aromatic Radical Cations Generated by FeCl ₃ . Journal of the American Chemical Society, 2019, 141, 1877-1881.	13.7	51
140	Câ€Selective and Diastereoselective Alkyl Addition to β,γâ€Alkynylâ€Î±â€imino Esters with Zinc(II)ate Complexes Angewandte Chemie - International Edition, 2015, 54, 2707-2711.	13.8	50
141	High-Performance Ammonium Hypoiodite/Oxone Catalysis for Enantioselective Oxidative Dearomatization of Arenols. ACS Catalysis, 2019, 9, 11619-11626.	11.2	50
142	Enantioselective Addition of Organozinc Reagents to Aldehydes Catalyzed by 3,3′-Bis(diphenylphosphinoyl)-BINOL. Advanced Synthesis and Catalysis, 2005, 347, 1561-1568.	4.3	49
143	Kinetic resolution of racemic alcohols catalyzed by minimal artificial acylases derived from l-histidine. Tetrahedron, 2007, 63, 6191-6203.	1.9	49
144	Chiral Ammonium Hypoiodite-catalyzed Enantioselective Oxidative Dearomatization of 1-Naphthols Using Hydrogen Peroxide. Chemistry Letters, 2015, 44, 179-181.	1.3	48

#	Article	IF	CITATIONS
145	Conformationally-Flexible Chiral Hypervalent Organoiodine Catalysts for Enantioselective Oxidative Transformations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1116-1122.	0.1	47
146	Kinetic Resolution of Racemic Carboxylic Acids by an <scp>l</scp> -Histidine-Derived Sulfonamide-Induced Enantioselective Esterification Reaction. Organic Letters, 2008, 10, 3191-3194.	4.6	46
147	Lanthanum(III) Isopropoxide Catalyzed Chemoselective Transesterification of Dimethyl Carbonate and Methyl Carbamates. Organic Letters, 2011, 13, 430-433.	4.6	46
148	Enantioselective Cyanoethoxycarbonylation of Isatins Promoted by a Lewis Base–BrÃ,nsted Acid Cooperative Catalyst. Angewandte Chemie - International Edition, 2013, 52, 8299-8303.	13.8	46
149	Bulky diarylammonium arenesulfonates as mild and extremely active dehydrative ester condensation catalysts. Tetrahedron, 2006, 62, 422-433.	1.9	44
150	Highly selective acetal cleavage using new organoaluminum reagents. Journal of the American Chemical Society, 1991, 113, 7074-7075.	13.7	43
151	The Oxorhenium(VII)-Catalyzed Direct Condensation of Phosphoric Acid with an Alcohol. Angewandte Chemie - International Edition, 2007, 46, 1423-1426.	13.8	43
152	Biomimetic Synthesis of Acid-Sensitive (â^')-Caparrapi Oxide and (+)-8-Epicaparrapi Oxide Induced by Artificial Cyclases. Organic Letters, 2005, 7, 1601-1604.	4.6	42
153	Kinetic Resolution of Racemic Carboxylic Acids through Asymmetric Protolactonization Promoted by Chiral Phosphonous Acid Diester. Organic Letters, 2013, 15, 2838-2841.	4.6	42
154	Enantioselective Cyanosilylation of Ketones with Lithium(I) Dicyanotrimethylsilicate(IV) Catalyzed by a Chiral Lithium(I) Phosphoryl Phenoxide. Angewandte Chemie - International Edition, 2016, 55, 4021-4025.	13.8	42
155	Enantioselective Aza-Friedel–Crafts Reaction of Indoles with Ketimines Catalyzed by Chiral Potassium Binaphthyldisulfonates. ACS Catalysis, 2018, 8, 349-353.	11.2	42
156	Crucial Role of the Conjugate Base for Silyl Lewis Acid Induced Mukaiyama Aldol Reactions. European Journal of Organic Chemistry, 2006, 2006, 1837-1844.	2.4	41
157	Enantioselective Cycloaddition of Styrenes with Aldimines Catalyzed by a Chiral Magnesium Potassium Binaphthyldisulfonate Cluster as a Chiral BrÃ,nsted Acid Catalyst. Journal of the American Chemical Society, 2017, 139, 8424-8427.	13.7	41
158	Baeyer–Villiger Oxidation and Oxidative Cascade Reactions with Aqueous Hydrogen Peroxide Catalyzed by Lipophilic Li[B(C ₆ F ₅) ₄] and Ca[B(C ₆ F ₅) ₄] ₂ . Angewandte Chemie - International Edition, 2012, 51, 9093-9096.	13.8	40
159	Highly Regio- and Stereoselective Isomerization of Silyl Enol Ethers Catalyzed by LBA. A Remarkable Enantiomer Discrimination of Chiral LBA. Journal of Organic Chemistry, 1998, 63, 6444-6445.	3.2	39
160	Commercially available neat organozincs as highly reactive reagents for catalytic enantioselective addition to ketones and aldehydes under solvent free conditions. Tetrahedron, 2011, 67, 4417-4424.	1.9	39
161	Perrhenic Acid-Catalyzed Dehydration from Primary Amides, Aldoximes,N-Monoacylureas, and α-Substituted Ketoximes to Nitrile Compounds. Bulletin of the Chemical Society of Japan, 2007, 80, 400-406.	3.2	38
162	Bromine atalyzed Aerobic Oxidation of Alcohols. Chemistry - an Asian Journal, 2010, 5, 456-460.	3.3	38

#	Article	IF	CITATIONS
163	An enantioselective oxidative coupling reaction of 2-naphthol derivatives catalyzed by chiral diphosphine oxide–iron(<scp>ii</scp>) complexes. Chemical Communications, 2019, 55, 13677-13680.	4.1	38
164	A Green Method for the Selective Esterification of Primary Alcohols in the Presence of Secondary Alcohols or Aromatic Alcohols. Synlett, 2001, 2001, 1117-1120.	1.8	37
165	Catalytic Diastereoselective Polycyclization of Homo(polyprenyl)arene Analogues Bearing Terminal Siloxyvinyl Groups. Organic Letters, 2006, 8, 5649-5652.	4.6	37
166	Enantioselective direct aminalization with primary carboxamides catalyzed by chiral ammonium 1,1′-binaphthyl-2,2′-disulfonates. Chemical Communications, 2012, 48, 4986.	4.1	36
167	Asymmetric intramolecular Cannizzaro reaction of anhydrous phenylglyoxal. Journal of Fluorine Chemistry, 2008, 129, 994-997.	1.7	35
168	Open-air and solvent-free ester condensation catalyzed by sulfonic acids. Tetrahedron Letters, 2008, 49, 5017-5020.	1.4	35
169	Chiral Supramolecular U-Shaped Catalysts Induce the Multiselective Diels–Alder Reaction of Propargyl Aldehyde. Journal of the American Chemical Society, 2018, 140, 16253-16263.	13.7	34
170	Chemo―and Enantioselective Oxidative αâ€Azidation of Carbonyl Compounds. Angewandte Chemie - International Edition, 2020, 59, 17110-17117.	13.8	34
171	Stereoselective reduction of bicyclic acetals. A method for reductive generation of heterocyclic ring systems. Tetrahedron Letters, 1987, 28, 6613-6616.	1.4	33
172	Catalytic Synthesis of Peptideâ€Derived Thiazolines and Oxazolines using Bis(quinolinolato)dioxomolybdenum(VI) Complexes. Advanced Synthesis and Catalysis, 2007, 349, 1641-1646.	4.3	33
173	Hydrophobic <i>N,N-</i> Diarylammonium Pyrosulfates as Dehydrative Condensation Catalysts under Aqueous Conditions. Organic Letters, 2012, 14, 30-33.	4.6	33
174	Chiral 1,1′â€Binaphthylâ€⊋,2′â€Disulfonic Acid (BINSA) and Its Derivatives for Asymmetric Catalysis. Asian Journal of Organic Chemistry, 2014, 3, 352-365.	2.7	33
175	Selenium–lodine Cooperative Catalyst for Chlorocyclization of Tryptamine Derivatives. Organic Letters, 2017, 19, 5525-5528.	4.6	33
176	Enantioselective bromocyclization of 2-geranylphenols induced by chiral phosphite–urea bifunctional catalysts. Chemical Communications, 2016, 52, 6068-6071.	4.1	32
177	Metal-free transesterification catalyzed by tetramethylammonium methyl carbonate. Green Chemistry, 2018, 20, 1193-1198.	9.0	32
178	Tris(pentafluorophenyl)boraneâ€Assisted Chiral Phosphoric Acid Catalysts for Enantioselective Inverseâ€Electronâ€Demand Heteroâ€Dielsâ€Alder Reaction of α,βâ€&ubstituted Acroleins. Asian Journal of Organic Chemistry, 2019, 8, 1061-1066.	2.7	32
179	Catalytic enantioselective Diels-Alder reactions using titanium complexes of cis-N-sulfonyl-2-amino-1-indanols. Tetrahedron Letters, 1993, 34, 8399-8402.	1.4	31
180	Synthesis ofC3Symmetric, Optically Active Triamidoamine and Protetraazaphosphatrane. Journal of Organic Chemistry, 1998, 63, 5692-5695.	3.2	31

#	Article	IF	CITATIONS
181	Zr(IV)Fe(III), Ga(III), and Sn(IV) Binary Metal Complexes as Synergistic and Reusable Esterification Catalysts. Advanced Synthesis and Catalysis, 2005, 347, 1337-1340.	4.3	31
182	Enantioselective alkynylation to aldimines catalyzed by chiral 2,2′-di(2-aminoaryloxy)-1,1′-binaphthyl-copper(I) complexes. Tetrahedron Letters, 2008, 49, 379-382.	1.4	31
183	Intramolecular Dehydrative Condensation of Dicarboxylic Acids with BrÃ,nsted Base-Assisted Boronic Acid Catalysts. Australian Journal of Chemistry, 2011, 64, 1458.	0.9	31
184	Enantioselective Cyanosilylation of Ketones with Lithium(I) Dicyanotrimethylsilicate(IV) Catalyzed by a Chiral Lithium(I) Phosphoryl Phenoxide. Angewandte Chemie, 2016, 128, 4089-4093.	2.0	31
185	Design of Multinuclear Chiral Organoaluminum Complexes with (<i>R</i>)-Binaphthol Derivatives. Synlett, 2001, 2001, 0394-0396.	1.8	30
186	High-performance Hypoiodite/Hydrogen Peroxide Catalytic System for the Oxylactonization of Aliphatic γ-Oxocarboxylic Acids. Chemistry Letters, 2015, 44, 387-389.	1.3	29
187	Thiourea–I ₂ as Lewis Base–Lewis Acid Cooperative Catalysts for Iodochlorination of Alkene with In Situ-Generated I–Cl. ACS Catalysis, 2018, 8, 6362-6366.	11.2	29
188	Multifactor Control of Vinyl Monomer Sequence, Molecular Weight, and Tacticity via Iterative Radical Additions and Olefin Metathesis Reactions. Journal of the American Chemical Society, 2020, 142, 18955-18962.	13.7	29
189	Rational Design of a New Chiral Lewis Acid Catalyst for Enantioselective Diels-Alder Reaction: Optically Active 2-Dichloroboryl-1,1′-binaphthyl. Synlett, 1998, 1998, 1053-1056.	1.8	28
190	Iron(III)–Zirconium(IV) Combined Salt Immobilized onN-(Polystyrylbutyl)pyridinium Triflylimide as a Reusable Catalyst for a Dehydrative Esterification Reaction. Advanced Synthesis and Catalysis, 2006, 348, 1505-1510.	4.3	28
191	Hypoiodite-Catalyzed Oxidative Umpolung of Indoles for Enantioselective Dearomatization. Journal of the American Chemical Society, 2022, 144, 5756-5761.	13.7	28
192	Chiral Aryl Grignard Reagents-Generation and Reactions with Carbonyl Compounds. Bulletin of the Chemical Society of Japan, 1989, 62, 3736-3738.	3.2	27
193	Acyclic stereoselection. 50. New stereoselective propanal/propanoic acid synthons for aldol reactions. Journal of Organic Chemistry, 1990, 55, 1114-1117.	3.2	27
194	Unusual Rate Acceleration in BrÃ,nsted Acid Catalyzed Dehydration Reactions: Local Hydrophobic Environment in AggregatedN-(2,6-diphenylphenyl)-N-mesitylammonium Pentafluorobenzenesulfonates. Chemistry - an Asian Journal, 2007, 2, 477-483.	3.3	27
195	Convergent total syntheses of fluvibactin and vibriobactin using molybdenum(vi) oxide-catalyzed dehydrative cyclization as a key step. Chemical Communications, 2008, , 3561.	4.1	27
196	Highly efficient synthesis of functionalized tertiary alcohols catalyzed by potassium alkoxide–crown ether complexes. Tetrahedron Letters, 2009, 50, 3171-3174.	1.4	27
197	Rational design of dynamic ammonium salt catalysts towards more flexible and selective function. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 290-313.	3.8	27
198	Boron Tribromideâ€Assisted Chiral Phosphoric Acid Catalysts for Enantioselective [2+2] Cycloaddition. Chemistry - an Asian Journal, 2018, 13, 2373-2377.	3.3	27

#	Article	IF	CITATIONS
199	Enantioselective [1,3] O-to-C rearrangement: dearomatization of alkyl 2-allyloxy/benzyloxy-1/3-naphthoates catalyzed by a chiral π–Cu(ii) complex. Chemical Science, 2019, 10, 2259-2263.	7.4	27
200	Dehydrative Cyclization Catalyzed by the Combination of Molybdenum(VI) Oxides and Benzoic Acids: First Synthesis of the Antitumour Substance BE-70016. Advanced Synthesis and Catalysis, 2007, 349, 551-555.	4.3	26
201	Dehydrative cyclization of serine, threonine, and cysteine residues catalyzed by molybdenum(VI) oxo compounds. Tetrahedron, 2009, 65, 2102-2109.	1.9	26
202	Enantioselective Diels–Alder Reaction of α-(Acylthio)acroleins: A New Entry to Sulfur-Containing Chiral Quaternary Carbons. Organic Letters, 2012, 14, 2972-2975.	4.6	26
203	Removal of Palladium(II) from Aqueous and Organic Solutions by Polystyrene-bound Trimercaptotriazine. Chemistry Letters, 2000, 29, 1218-1219.	1.3	25
204	Lewis Acid-Activated Chiral Leaving Group:Â Enantioselective Electrophilic Addition to Prochiral Olefins. Journal of Organic Chemistry, 2002, 67, 5124-5137.	3.2	25
205	Synthesis of (all-rac)-?-Tocopherol in Supercritical Carbon Dioxide: Tuning of the Product Selectivity in Batch and Continuous-Flow Reactors. Advanced Synthesis and Catalysis, 2005, 347, 220-224.	4.3	25
206	In situ generated "lanthanum(iii) nitrate alkoxide―as a highly active and nearly neutral transesterification catalyst. Chemical Communications, 2012, 48, 9465.	4.1	25
207	Design of Chiral Macrocyclic Complexes Based on trans-Chelation ofn:nMetal–BidentateP,N- orN,N-Ligands. Chemistry Letters, 2006, 35, 172-173.	1.3	24
208	Direct ester condensation catalyzed by bulky diarylammonium pentafluorobenzenesulfonates. Nature Protocols, 2007, 2, 1746-1751.	12.0	23
209	<i>N,N</i> -Diarylammonium Pyrosulfate as a Highly Effective Reverse Micelle-Type Catalyst for Hydrolysis of Esters. Organic Letters, 2012, 14, 3194-3197.	4.6	23
210	Enantio- and Diastereoselective Carbonyl-Ene Cyclization–Acetalization Tandem Reaction Catalyzed by Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acids. ACS Catalysis, 2021, 11, 6121-6127.	11.2	23
211	Bulky phosphazenium cation catalysis for dehydrative condensation of phosphoric acid with alcohols. Green Chemistry, 2007, 9, 1166.	9.0	22
212	C- and N-Selective Grignard Addition Reactions of α-Aldimino Esters in the Presence or Absence of Zinc(II) Chloride: Synthetic Applications to Optically Active Azacycles. Organic Letters, 2015, 17, 2412-2415.	4.6	22
213	Chiral Ammonium Hypoiodite Salt-catalyzed Enantioselective Oxidative Cycloetherification to 2-Acyl Tetrahydrofurans. Chemistry Letters, 2016, 45, 353-355.	1.3	22
214	Design of Boronic Acid–Base Complexes as Reusable Homogeneous Catalysts in Dehydrative Condensations between Carboxylic Acids and Amines. Asian Journal of Organic Chemistry, 2017, 6, 1191-1194.	2.7	22
215	Synthesis of 1,1′‧pirobiindaneâ€7,7′â€Disulfonic Acid and Disulfonimide: Application for Catalytic Asymmetric Aminalization. Chemistry - an Asian Journal, 2018, 13, 2378-2381.	3.3	22
216	A New and Extremely Active Corey's Chiral Oxazaborolidine Catalyst. Synlett, 1999, 1999, 1283-1285.	1.8	21

#	Article	IF	CITATIONS
217	Selective Bromocyclization of 2â€Geranylphenols Promoted by Phosphite–Urea Cooperative Catalysts. Chirality, 2014, 26, 356-360.	2.6	21
218	An enantioselective Diels–Alder reaction of 1,2-dihydropyridines with α-acyloxyacroleins catalyzed by a chiral primary ammonium salt. Chemical Communications, 2014, 50, 6357-6360.	4.1	21
219	Practical Oxidative Dearomatization of Phenols with Sodium Hypochlorite Pentahydrate. Chemistry Letters, 2015, 44, 381-383.	1.3	21
220	Regioselective Oxidative Chlorination of Arenols Using NaCl and Oxone. European Journal of Organic Chemistry, 2019, 2019, 27-31.	2.4	21
221	Enantio―and Siteâ€Selective αâ€Fluorination of <i>N</i> â€Acyl 3,5â€Dimethylpyrazoles Catalyzed by Chiral π–Cu ^{II} Complexes. Angewandte Chemie - International Edition, 2020, 59, 17641-17647.	13.8	21
222	Synthesis of Optically Pure 3,3′-Diaryl Binaphthyl Disulfonic Acids <i>via</i> Stepwise N–S Bond Cleavage. Journal of Organic Chemistry, 2013, 78, 10405-10413.	3.2	20
223	Chiral Supramolecular Magnesium(II) Binaphtholate Catalysts for the Enantioselective Direct Mannichâ€Type Reaction and Heteroâ€Diels–Alder Reaction. Asian Journal of Organic Chemistry, 2013, 2, 952-956.	2.7	20
224	Boronic Acid-Catalyzed Reactions of Carboxylic Acids. Topics in Organometallic Chemistry, 2015, , 243-270.	0.7	20
225	Enantioselective Conjugate Hydrocyanation of α,β-Unsaturated <i>N</i> -Acylpyrroles Catalyzed by Chiral Lithium(I) Phosphoryl Phenoxide. ACS Catalysis, 2017, 7, 6686-6690.	11.2	20
226	Asymmetric Total Synthesis of (â^')-Maldoxin, a Common Biosynthetic Ancestor of the Chloropupukeananin Family. Organic Letters, 2018, 20, 3919-3922.	4.6	20
227	Enantioselective Aza-Friedel–Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral <i>C</i> ₁ -Symmetric Bis(phosphoric Acid). Organic Letters, 2020, 22, 9614-9620.	4.6	20
228	A Concise Synthesis of (+)-(S)-Dihydroperiphylline. Synlett, 1995, 1995, 41-42.	1.8	19
229	Biomimetic synthesis of acid-sensitive (â^')- and (+)-caparrapi oxides, (â^')- and (+)-8-epicaparrapi oxides, and (+)-dysifragin induced by artificial cyclases. Bioorganic and Medicinal Chemistry, 2005, 13, 5055-5065.	3.0	19
230	Enantioselective conjugate addition of dialkylzinc to cyclic enones catalyzed by chiral binaphthyldiamine–copper(I) complexes. Tetrahedron Letters, 2007, 48, 8590-8594.	1.4	19
231	Desymmetrization of <i>meso</i> â€Glycerol Derivatives Induced by <scp>L</scp> â€Histidineâ€Derived Acylation Catalysts. Advanced Synthesis and Catalysis, 2011, 353, 1938-1942.	4.3	19
232	Initiators for Radical Cation-induced [2 + 2]- and [4 + 2]-Cycloadditions of Electron-rich Alkenes. Chemistry Letters, 2020, 49, 107-113.	1.3	19
233	Enantioselective 1,4â€Addition Reaction of α,βâ€Unsaturated Carboxylic Acids with Cycloalkanones Using Cooperative Chiral Amine–Boronic Acid Catalysts. Angewandte Chemie - International Edition, 2020, 59, 17256-17260.	13.8	19
234	Chiral SEM Etherâ^'Tin Tetrachloride as an Enantioselective Hydroxymethylating Reagent for Silyl Enol Ethers:  γ-Effect of Silicon. Journal of the American Chemical Society, 1999, 121, 7720-7721.	13.7	18

#	Article	IF	CITATIONS
235	Organoammonium Salt-Catalyzed Enantioselective Cycloaddition Reactions with α-(Acyloxy)- or α-Diacylaminoacroleins. Bulletin of the Chemical Society of Japan, 2010, 83, 313-322.	3.2	18
236	Synthesis of chiral 3,3′-disubstituted 1,1′-binaphthyl-2,2′-disulfonic acids. Tetrahedron: Asymmetry, 2010 21, 1311-1314.	'1.8	17
237	Enantioselective Cyano-Alkoxycarbonylation of α-Oxoesters Promoted by BrÃ,nsted Acid–Lewis Base Cooperative Catalysts. Organic Letters, 2015, 17, 6070-6073.	4.6	17
238	Chemoselective Oxidative Spiroetherification and Spiroamination of Arenols Using I ⁺ /Oxone Catalysis. Organic Letters, 2020, 22, 560-564.	4.6	17
239	First Enantioselective Protonation of Prochiral Allyltrimethyltins Using Lewis Acid Assisted Chiral BrÃ,nsted Acids. Synlett, 1997, 1997, 758-760.	1.8	16
240	Câ€Selective and Diastereoselective Alkyl Addition to β,γâ€Alkynylâ€Î±â€imino Esters with Zinc(II)ate Complexes Angewandte Chemie, 2015, 127, 2745-2749.	2.0	16
241	Oneâ€Pot Tandem Michael Addition/Enantioselective Coniaâ€Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angewandte Chemie - International Edition, 2020, 59, 16470-16474.	13.8	16
242	A π–Cu(II)â^'Ï€ Complex as an Extremely Active Catalyst for Enantioselective α-Halogenation of <i>N</i> Acyl-3,5-dimethylpyrazoles. ACS Catalysis, 2022, 12, 1012-1017.	11.2	16
243	Nucleophilic Phosphine-Catalyzed Iodocyclization of Isoprenoids Bearing an Oxygen Terminal Group. Heterocycles, 2010, 82, 249.	0.7	15
244	Enantioselective Diels–Alder Reaction Induced by Chiral Supramolecular Lewis Acid Catalysts Based on CN··Ĥ and PO···B Coordination Bonds. Synlett, 2016, 27, 1061-1067.	1.8	15
245	4,5â€Dimethylâ€2″odoxybenzenesulfonic Acid Catalyzed Siteâ€Selective Oxidation of 2â€Substituted Phenols 1,2â€Quinols. Angewandte Chemie, 2017, 129, 4014-4018.	to 2.0	15
246	Ammonium Hypoiodite-Catalyzed Peroxidative Dearomatization of Phenols. Heterocycles, 2017, 95, 1132.	0.7	15
247	Stereospecific annulation of hydroxy vinyl ethers. Synthetic application to polyfunctionalized cyclic compounds. Tetrahedron, 1996, 52, 7297-7320.	1.9	14
248	Highly Practical BINOL-Derived Acid-Base Combined Salt Catalysts for the Asymmetric Direct Mannich-Type Reaction. Synthesis, 2010, 2010, 3785-3801.	2.3	14
249	Highly Active Chiral Dilithium(I) Binaphthyldisulfonate Catalysts for Enantio- and Chemoselective Strecker-Type Reactions. ACS Catalysis, 2019, 9, 8178-8186.	11.2	14
250	Rate-Accelerating Effect by the Neighboring-Group Participation of Protecting Groups in the Dehydrative Cyclization of 1,3,5-Triketones. Organic Letters, 2008, 10, 2569-2572.	4.6	13
251	Highly Chemoselective Stoichiometric Alkylation of Ketones with Grignard Reagent Derived Zinc(II) Ate Complexes. Synlett, 2010, 2010, 321-324.	1.8	13
252	Hypoiodite-Catalyzed Chemoselective Tandem Oxidation of Homotryptamines to Peroxy- and Epoxytetrahydropyridoindolenines. Organic Letters, 2020, 22, 8049-8054.	4.6	13

#	Article	IF	CITATIONS
253	Enantioselective Dialkylzinc Addition to Aldehydes Catalyzed by Chiral Zn(II)-BINOLates Bearing Phosphonates and Phosphoramides in the 3,3′-Positions. Synlett, 2006, 2006, 1762-1764.	1.8	12
254	Remote Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acid Catalysts for the Enantioselective Diels–Alder Reaction. Synlett, 2016, 27, 564-570.	1.8	12
255	Radicalâ€Cationâ€Induced Crossed [2+2] Cycloaddition of Electronâ€Deficient Anetholes Initiated by Iron(III) Salt. Advanced Synthesis and Catalysis, 2020, 362, 960-963.	4.3	12
256	I + /TBHP Catalysis For Tandem Oxidative Cyclization To Indolo[2,3―b]quinolines. Asian Journal of Organic Chemistry, 2021, 10, 164-169.	2.7	12
257	Enantioselective Friedel-Crafts Aminoalkylation Catalyzed by Chiral Ammonium 1,1′-Binaphthyl-2,2′-disulfonates. Synlett, 2011, 2011, 1247-1250.	1.8	11
258	Regioselective 1,4- and 1,6-Conjugate Additions of Grignard Reagent-Derived Organozinc(II)ates to Polyconjugated Esters. Organic Letters, 2016, 18, 4462-4465.	4.6	11
259	Pyrolysis of benzenediazonium bis(trifluoromethanesulfonyl)methide. Journal of Fluorine Chemistry, 2000, 106, 139-141.	1.7	10
260	Asymmetric Synthesis of (R)-Limonene and (S)-Cembrene-A by an Intramolecular Cyclization Reaction Using a Chiral Leaving Group. Synlett, 2001, 2001, 1113-1116.	1.8	10
261	A Fluorous Super BrÃ,nsted Acid Catalyst: Application to Fluorous Catalysis without Fluorous Solvents. Synlett, 2002, 2002, 1299-1301.	1.8	10
262	Arylboronic Acid-Catalyzed Direct Condensation of Carboxylic Acids with Ureas. Synlett, 2004, 2004, 1355-1358.	1.8	10
263	Halogen-Bonding Interaction between I2 and N-lodosuccinimide in Lewis Base-Catalyzed lodolactonization. Organic Letters, 2020, 22, 4888-4892.	4.6	10
264	Chemoselective Transesterification of Methyl (Meth)acrylates Catalyzed by Sodium(I) or Magnesium(II) Aryloxides. ACS Catalysis, 2021, 11, 199-207.	11.2	10
265	New bulky chiral Lewis acid catalyst: 3,3?-di(2-mesitylethynyl)binaphthol-titanium(iv) complex. Chirality, 2003, 15, 135-138.	2.6	9
266	Dimeric scandium(III) and monomeric lanthanide(III) complexes with perfluoropropane-1,3-disulfonates as counter anions for Lewis acid catalysis. Journal of Organometallic Chemistry, 2007, 692, 569-578.	1.8	9
267	Lewis Acids. ACS Symposium Series, 2016, , 27-66.	0.5	9
268	Chiral Pyrophosphoric Acid Catalysts for the para-Selective and Enantioselective Aza-Friedel–Crafts Reaction of Phenols. Synthesis, 2018, 50, 4577-4590.	2.3	9
269	Designer Lewis Acids for Selective Organic Synthesis Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1994, 52, 912-922.	0.1	8
270	Selective Synthesis of Cyclic Phosphoric Acid Diesters through Oxorhenium(VII)-Catalyzed Dehydrative Condensation of Phosphoric Acid with Alcohols. Heterocycles, 2008, 76, 657.	0.7	8

KAZUAKI ISHIHARA

#	Article	IF	CITATIONS
271	Cationic Iron(III) Salt as an Initiator for Radical Cationâ€induced [4+2] Cycloaddition. Asian Journal of Organic Chemistry, 2020, 9, 395-398.	2.7	8
272	Thorpe–Ingold Effect on High-Performance Chiral π–Copper(II) Catalyst. Synlett, 2022, 33, 585-588.	1.8	8
273	A Concise Synthesis of (S)-(+)-Ginnol Based on Catalytic Enantioselective Addition of Commercially Unavailable Di(n-alkyl)zinc to Aldehydes and Ketones. Synlett, 2010, 2010, 2024-2028.	1.8	7
274	Ammonium Hypoiodite-catalyzed Oxidative Dearomatizative Azidation of Arenols. Chemistry Letters, 2019, 48, 353-356.	1.3	7
275	Insight into the Mechanism of the Acylation of Alcohols with Acid Anhydrides Catalyzed by Phosphoric Acid Derivatives. Journal of Organic Chemistry, 2021, 86, 5197-5212.	3.2	7
276	Cp*Rh ^{III} /Chiral Disulfonate/CuOAc Catalyst System for the Enantioselective Intramolecular Oxyamination of Alkenes. ACS Catalysis, 2021, 11, 15187-15193.	11.2	7
277	Single-Pass Reaction Column System with Super Brønsted Acid-loaded Resin. Synlett, 2002, 2002, 1296-1298.	1.8	6
278	Chemo―and Enantioselective Oxidative αâ€Azidation of Carbonyl Compounds. Angewandte Chemie, 2020, 132, 17258-17265.	2.0	6
279	Aldol Synthesis with an Aqueous Solution of Formalin. Synlett, 2003, 2003, 2219-2221.	1.8	5
280	Enantio―and Siteâ€Selective αâ€Fluorination of N â€Acyl 3,5â€Dimethylpyrazoles Catalyzed by Chiral π–Cu Complexes. Angewandte Chemie, 2020, 132, 17794-17800.	_{2.0}	5
281	Enantioselective 1,4â€Addition Reaction of α,βâ€Unsaturated Carboxylic Acids with Cycloalkanones Using Cooperative Chiral Amine–Boronic Acid Catalysts. Angewandte Chemie, 2020, 132, 17409-17413.	2.0	5
282	Reusable Silicaâ€Supported Ammonium BINSate Catalysts for Enantio―and Diastereoselective Friedel–Craftsâ€Type Double Aminoalkylation of N â€Alkylpyrroles with Aldimines. Asian Journal of Organic Chemistry, 2021, 10, 360-365.	2.7	5
283	Oxidative Ritterâ€ŧype Chloroamidation of Alkenes Using NaCl and Oxone. Asian Journal of Organic Chemistry, 2021, 10, 2907-2910.	2.7	5
284	A New Method for the Preparation of Aluminum and Titanium Tris(2,6-diphenylphenoxide) Reagents and Their Application in Organic Synthesis. Chemistry Letters, 2003, 32, 1006-1007.	1.3	4
285	Asymmetric Vinylogous Direct Aldol Reaction Using Aluminum Tris[2,6-bis(4-alkylphenyl)phenoxide]. Synlett, 2004, 2004, 732-734.	1.8	4
286	αâ€Heterosubstituted βâ€Alkylacroleins as Useful Multisubstituted Dienophiles for Enantioselective Diels–Alder Reactions. Asian Journal of Organic Chemistry, 2012, 1, 133-137.	2.7	4
287	Hypoiodite-catalysed oxidative homocoupling of arenols and tandem oxidation/cross-coupling of hydroquinones with arenes. Chemical Communications, 2021, 57, 11625-11628.	4.1	4
288	Organoboronic Acids and Organoborinic Acids as BrÃ,nsted-Lewis Acid Catalysts in Organic Synthesis. , 2006, , 377-409.		3

KAZUAKI ISHIHARA

#	Article	IF	CITATIONS
289	Chiral BrÃ,nsted/Lewis Acid Catalysts. , 0, , 359-381.		3
290	3-Pyrroline-1-carbonyl (Pyroc) Group: A Removable Protecting Group for the Kinetic Resolution of Racemic Carboxylic Acids and Alcohols through Catalytic Asymmetric Acylation. Synlett, 2009, 2009, 1647-1650.	1.8	3
291	Radical Cation [4+2] Cycloaddition of Nonâ€Conjugated Tetrasubstituted Alkenes by an FeCl ₃ /AgSbF ₆ Coâ€Initiator. Asian Journal of Organic Chemistry, 2021, 10, 2534-2537.	2.7	3
292	Development of Environmentally Benign Catalytic Dehydration Process. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 651-663.	0.1	2
293	Titelbild: Enantioselective Kita Oxidative Spirolactonization Catalyzed by Inâ€Situ Generated Chiral Hypervalent Iodine(III) Species (Angew. Chem. 12/2010). Angewandte Chemie, 2010, 122, 2113-2113.	2.0	2
294	Cover Picture: Enantioselective Kita Oxidative Spirolactonization Catalyzed by Inâ€Situ Generated Chiral Hypervalent Iodine(III) Species (Angew. Chem. Int. Ed. 12/2010). Angewandte Chemie - International Edition, 2010, 49, 2069-2069.	13.8	2
295	Development of Highly Efficient Acid-Base Combination Catalyses Based on Carbon-Metal Bonds Activation in Organometallic Reagents. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 564-577.	0.1	2
296	Polystyrene-Bound Tetrafluorophenylbis(triflyl)methane as an Organic-Solvent-Swellable and Strong BrAnsted Acid Catalyst The authors thank Mr. Shoichi Kondo for the single-crystal X-ray analysis. Sodium triflate was generously donated by Central Glass Co., Ltd., Japan. The authors also acknowledge Dr. Yuko Wasada and Dr. Manabu Kubota for their helpful discussions on the	13.8	2
297	theoretical calculations Angewandte Chemie - International Edition, 2001, 40, 4077-4079. Arylboron Catalysts for Stereoselective Organic Transformations. ACS Symposium Series, 2001, , 108-121.	0.5	1
298	Titelbild: Which Is the Actual Catalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate? (Angew.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 1
299	BrÃ,nsted Acid/Lewis Base Hybrid Complexes. Topics in Organometallic Chemistry, 2015, , 91-120.	0.7	1
300	Oneâ€Pot Tandem Michael Addition/Enantioselective Coniaâ€Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angewandte Chemie, 2020, 132, 16612.	2.0	1
301	Design of High Performance Catalysts Based on Acid-Base Combination Chemistry. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 98-110.	0.1	1
302	Recent Developments of Arylboron Compounds as Lewis Acid Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 45-53.	0.1	0
303	Synthesis of Carboxamides by LDA-Catalyzed Haller—Bauer and Cannizzaro Reactions ChemInform, 2004, 35, no.	0.0	0
304	Rational Design of an L-Histidine-Derived Minimal Artificial Acylase for the Kinetic Resolution of Racemic Alcohols ChemInform, 2005, 36, no.	0.0	0
305	Bulky Diarylammonium Arenesulfonates as Selective Esterification Catalysts ChemInform, 2005, 36, no.	0.0	0
306	Design of an Organocatalyst for the Enantioselective Diels—Alder Reaction with α-Acyloxyacroleins ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
307	Cover Picture: Which Is the Actual Catalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate? (Angew. Chem. Int. Ed. 22/2010). Angewandte Chemie - International Edition, 2010, 49, 3699-3699.	13.8	Ο
308	Titelbild: Chiral Magnesium(II) Binaphtholates as Cooperative BrÃ,nsted/Lewis Acid-Base Catalysts for the Highly Enantioselective Addition of Phosphorus Nucleophiles to α,β-Unsaturated Esters and Ketones (Angew. Chem. 17/2013). Angewandte Chemie, 2013, 125, 4591-4591.	2.0	0
309	Rücktitelbild: Enantioselective Cyanosilylation of Ketones with Lithium(I) Dicyanotrimethylsilicate(IV) Catalyzed by a Chiral Lithium(I) Phosphoryl Phenoxide (Angew. Chem. 12/2016). Angewandte Chemie, 2016, 128, 4172-4172.	2.0	Ο
310	Chapter 2. Alkali Metal (Li, Na, K)-based Catalysts. RSC Green Chemistry, 2015, , 15-48.	0.1	0