## Arnaud A Mailleux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187879/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Nonapoptotic Cell Death Process, Entosis, that Occurs by Cell-in-Cell Invasion. Cell, 2007, 131, 966-979.                                                                                                                                                       | 13.5 | 582       |
| 2  | BIM Regulates Apoptosis during Mammary Ductal Morphogenesis, and Its Absence Reveals Alternative<br>Cell Death Mechanisms. Developmental Cell, 2007, 12, 221-234.                                                                                                 | 3.1  | 220       |
| 3  | Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mechanisms of Development, 2001, 102, 81-94.                                                                                                                   | 1.7  | 203       |
| 4  | Molecular Mechanisms of Early Lung Specification and Branching Morphogenesis. Pediatric Research, 2005, 57, 26R-37R.                                                                                                                                              | 1.1  | 192       |
| 5  | Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation.<br>Differentiation, 2003, 71, 1-17.                                                                                                                                    | 1.0  | 183       |
| 6  | Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Developmental Biology, 2007, 307, 237-247.                                                          | 0.9  | 169       |
| 7  | Fgf10 expression identifies parabronchial smooth muscle cell progenitors and is required for their entry into the smooth muscle cell lineage. Development (Cambridge), 2005, 132, 2157-2166.                                                                      | 1.2  | 168       |
| 8  | Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial<br>anoikis and morphogenesis. Proceedings of the National Academy of Sciences of the United States of<br>America, 2007, 104, 3787-3792.                        | 3.3  | 129       |
| 9  | The Hedgehog System Machinery Controls Transforming Growth Factor-β–Dependent Myofibroblastic<br>Differentiation in Humans. American Journal of Pathology, 2012, 181, 2126-2137.                                                                                  | 1.9  | 119       |
| 10 | Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models.<br>Cell Cycle, 2008, 7, 57-62.                                                                                                                                | 1.3  | 113       |
| 11 | Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development (Cambridge), 2006, 133, 2325-2335.                                                                     | 1.2  | 106       |
| 12 | Identification of Periplakin as a New Target for Autoreactivity in Idiopathic Pulmonary Fibrosis.<br>American Journal of Respiratory and Critical Care Medicine, 2011, 183, 759-766.                                                                              | 2.5  | 102       |
| 13 | Do Lung Remodeling, Repair, and Regeneration Recapitulate Respiratory Ontogeny?. American Journal of Respiratory and Critical Care Medicine, 2001, 164, S59-S62.                                                                                                  | 2.5  | 76        |
| 14 | Targeting the Hedgehog–Glioma-Associated Oncogene Homolog Pathway Inhibits Bleomycin-Induced<br>Lung Fibrosis in Mice. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 11-25.                                                               | 1.4  | 76        |
| 15 | FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit<br>myofibroblast differentiation of human lung fibroblasts in vitro. American Journal of Physiology -<br>Lung Cellular and Molecular Physiology, 2016, 310, L615-L629. | 1.3  | 75        |
| 16 | Requirement for fibroblast growth factor 10 or fibroblast growth factor receptor 2-IIIb signaling for cecal development in mouse. Developmental Biology, 2004, 265, 61-74.                                                                                        | 0.9  | 67        |
| 17 | Defect of Pro-Hepatocyte Growth Factor Activation by Fibroblasts in Idiopathic Pulmonary Fibrosis.<br>American Journal of Respiratory and Critical Care Medicine, 2006, 174, 58-66.                                                                               | 2.5  | 57        |
| 18 | Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice. American<br>Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1230-L1239.                                                                     | 1.3  | 56        |

ARNAUD A MAILLEUX

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Knockout of Insulin-Like Growth Factor-1 Receptor Impairs Distal Lung Morphogenesis. PLoS ONE, 2012,<br>7, e48071.                                                                                        | 1.1 | 56        |
| 20 | Silver Nanoparticles Impair Retinoic Acid-Inducible Gene I-Mediated Mitochondrial Antiviral Immunity by Blocking the Autophagic Flux in Lung Epithelial Cells. ACS Nano, 2018, 12, 1188-1202.             | 7.3 | 56        |
| 21 | Hepatocyte Growth Factor and Lung Fibrosis. Proceedings of the American Thoracic Society, 2012, 9, 158-163.                                                                                               | 3.5 | 52        |
| 22 | Regulator of telomere length 1 ( <i>RTEL1</i> ) mutations are associated with heterogeneous pulmonary and extra-pulmonary phenotypes. European Respiratory Journal, 2019, 53, 1800508.                    | 3.1 | 45        |
| 23 | TRIM33 prevents pulmonary fibrosis by impairing TGF-β1 signalling. European Respiratory Journal, 2020, 55, 1901346.                                                                                       | 3.1 | 45        |
| 24 | Of flies, mice and men: a systematic approach to understanding the early life origins of chronic lung disease. Thorax, 2013, 68, 380-384.                                                                 | 2.7 | 34        |
| 25 | Novel mechanisms in murine nitrofen-induced pulmonary hypoplasia: FGF-10 rescue in culture.<br>American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L250-L257.             | 1.3 | 33        |
| 26 | Human airway trypsin-like protease, a serine protease involved in respiratory diseases. American<br>Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L657-L668.                 | 1.3 | 32        |
| 27 | Chaotic activation of developmental signalling pathways drives idiopathic pulmonary fibrosis.<br>European Respiratory Review, 2020, 29, 190140.                                                           | 3.0 | 31        |
| 28 | Forkhead Box F1 represses cell growth and inhibits COL1 and ARPC2 expression in lung fibroblasts in vitro. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L838-L847. | 1.3 | 30        |
| 29 | Macrophage Polarization Favors Epithelial Repair During Acute Respiratory Distress Syndrome*.<br>Critical Care Medicine, 2018, 46, e692-e701.                                                             | 0.4 | 23        |
| 30 | The pro-apoptotic BAX protein influences cell growth and differentiation from the nucleus in healthy interphasic cells. Cell Cycle, 2017, 16, 2108-2118.                                                  | 1.3 | 19        |
| 31 | FGF9 prevents pleural fibrosis induced by intrapleural adenovirus injection in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L781-L795.                       | 1.3 | 18        |
| 32 | Licence to kill senescent cells in idiopathic pulmonary fibrosis?. European Respiratory Journal, 2017,<br>50, 1701360.                                                                                    | 3.1 | 16        |
| 33 | Basophils and IgE contribute to mixed connective tissue disease development. Journal of Allergy and<br>Clinical Immunology, 2021, 147, 1478-1489.e11.                                                     | 1.5 | 14        |
| 34 | Human lung fibroblasts may modulate dendritic cell phenotype and function: results from a pilot in vitro study. Respiratory Research, 2016, 17, 36.                                                       | 1.4 | 13        |
| 35 | Blood fibrocytes are associated with severity and prognosis in COVID-19 pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L847-L858.                         | 1.3 | 11        |
| 36 | Alveolar fluid in acute respiratory distress syndrome promotes fibroblast migration. Critical Care<br>Medicine, 2012, 40, 2041-2049.                                                                      | 0.4 | 10        |

ARNAUD A MAILLEUX

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Anti-parietal cell autoimmunity is associated with an accelerated decline of lung function in IPF patients. Respiratory Medicine, 2018, 135, 15-21.                                                                       | 1.3 | 10        |
| 38 | Sonic Hedgehog signaling in pulmonary fibrosis: a spiky issue?. American Journal of Physiology - Lung<br>Cellular and Molecular Physiology, 2013, 304, L391-L393.                                                         | 1.3 | 9         |
| 39 | Fibroblasts: the missing link between fibrotic lung diseases of different etiologies?. Respiratory<br>Research, 2013, 14, 81.                                                                                             | 1.4 | 8         |
| 40 | Human airway trypsinâ€like protease exerts potent, antifibrotic action in pulmonary fibrosis. FASEB<br>Journal, 2018, 32, 1250-1264.                                                                                      | 0.2 | 6         |
| 41 | Serum Amyloid P Contained in Alveolar Fluid From Patients With Acute Respiratory Distress Syndrome<br>Mediates the Inhibition of Monocyte Differentiation into Fibrocyte. Critical Care Medicine, 2016, 44,<br>e563-e573. | 0.4 | 5         |
| 42 | Lung Fibroblasts from Idiopathic Pulmonary Fibrosis Patients Harbor Short and Unstable Telomeres<br>Leading to Chromosomal Instability. Biomedicines, 2022, 10, 310.                                                      | 1.4 | 5         |
| 43 | New targets in idiopathic pulmonary fibrosis: from inflammation and immunity to remodeling and repair. Expert Opinion on Orphan Drugs, 2016, 4, 511-520.                                                                  | 0.5 | 4         |
| 44 | PRRX1 a pro-fibrotic mesenchymal transcription factor modulated by remodeled microenvironment in IPF. , 2018, , .                                                                                                         |     | 1         |
| 45 | FGFR4 has pro fibrotic properties in Idiopathic Pulmonary Fibrosis. , 2020, , .                                                                                                                                           |     | 1         |
| 46 | Fibrocytes In Bronchoalveolar Lavage Fluid Are Associated With Outcome In Patients With Acute Lung<br>Injury. , 2010, , .                                                                                                 |     | 0         |
| 47 | Involvement Of The Sonic Hedgehog Signaling Pathway In Idiopathic Pulmonary Fibrosis. , 2011, , .                                                                                                                         |     | 0         |
| 48 | FGF-9 overexpression prevents pleural fibrosis induced by intra-pleural adenovirus injection in mice. , 2015, , .                                                                                                         |     | 0         |
| 49 | Reactivation of developmental pathways in idiopathic pulmonary fibrosis: FGF9 and FGF18 modulate the phenotype of control and fibrotic human lung fibroblastsin vitro. , 2015, , .                                        |     | 0         |
| 50 | LSC Abstract – Activation of FGF9 and 18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts. , 2016, , .                                 |     | 0         |
| 51 | LSC Abstract – Activation of FGF9 and 18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts. , 2016, , .                                 |     | 0         |
| 52 | Fibroblast growth factor 9 (FGF9) modulates mesothelial cells plasticity to decrease differentiation and migration <i>in vitro</i> ., 2016, , .                                                                           |     | 0         |
| 53 | Mesenchyme associated transcription factor PRRX1: A key regulator of IPF fibroblast. , 2016, , .                                                                                                                          |     | 0         |
| 54 | LSC Abstract – Medium-throughput RNA interference assays identify phenotype regulators of lung mesenchymal cells based on proteomics profiling. , 2016, , .                                                               |     | 0         |

| #  | Article                                                                                                                        | IF | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 55 | Human Airway Trypsin-like protease exerts potent anti-fibrotic role in vivo. , 2017, , .                                       |    | Ο         |
| 56 | TIF1? has a protective role in pulmonary fibrosis. , 2018, , .                                                                 |    | 0         |
| 57 | Late Breaking Abstract - PRRX1 inhibition decreases fibrosis in the bleomycin-induced lung fibrosis model in mice. , 2018, , . |    | 0         |
| 58 | Implication of FGFR4 and its ligands in Idiopathic Pulmonary Fibrosis. , 2018, , .                                             |    | 0         |