Daoqiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187739/publications.pdf

Version: 2024-02-01

135	10,322	45	98
papers	citations	h-index	g-index
136	136	136	7401
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pairwise feature-based generative adversarial network for incomplete multi-modal Alzheimer's disease diagnosis. Visual Computer, 2023, 39, 2235-2244.	2.5	6
2	Kernel based statistic: identifying topological differences in brain networks. Intelligent Medicine, 2022, 2, 30-40.	1.6	3
3	Identify connectome between genotypes and brain network phenotypes via deep self-reconstruction sparse canonical correlation analysis. Bioinformatics, 2022, 38, 2323-2332.	1.8	6
4	ASMFS: Adaptive-similarity-based multi-modality feature selection for classification of Alzheimer's disease. Pattern Recognition, 2022, 126, 108566.	5.1	39
5	Diagnosis of Mild Cognitive Impairment With Ordinal Pattern Kernel. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1030-1040.	2.7	3
6	Identify Complex Imaging Genetic Patterns via Fusion Self-Expressive Network Analysis. IEEE Transactions on Medical Imaging, 2021, 40, 1673-1686.	5.4	8
7	Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI. Medical Image Analysis, 2021, 71, 102063.	7.0	24
8	Dual Attention Multi-Instance Deep Learning for Alzheimer's Disease Diagnosis With Structural MRI. IEEE Transactions on Medical Imaging, 2021, 40, 2354-2366.	5.4	94
9	Multimodal Brain Network Jointly Construction and Fusion for Diagnosis of Epilepsy. Frontiers in Neuroscience, 2021, 15, 734711.	1.4	6
10	Graph-In-Graph Convolutional Networks For Brain Disease Diagnosis. , 2021, , .		3
11	GACDN: generative adversarial feature completion and diagnosis network for COVID-19. BMC Medical Imaging, 2021, 21, 154.	1.4	3
12	Hierarchical Structured Sparse Learning for Schizophrenia Identification. Neuroinformatics, 2020, 18, 43-57.	1.5	12
13	Identifying Autism Spectrum Disorder With Multi-Site fMRI via Low-Rank Domain Adaptation. IEEE Transactions on Medical Imaging, 2020, 39, 644-655.	5.4	109
14	Coherent Pattern in Multi-Layer Brain Networks: Application to Epilepsy Identification. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2609-2620.	3.9	8
15	Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images. IEEE Transactions on Medical Imaging, 2020, 39, 2000-2012.	5.4	46
16	Hypergraph based multi-task feature selection for multimodal classification of Alzheimer's disease. Computerized Medical Imaging and Graphics, 2020, 80, 101663.	3.5	72
17	Spatial-Temporal Dependency Modeling and Network Hub Detection for Functional MRI Analysis via Convolutional-Recurrent Network. IEEE Transactions on Biomedical Engineering, 2020, 67, 2241-2252.	2.5	74
18	Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease. Medical Image Analysis, 2020, 60, 101625.	7.0	99

#	Article	IF	CITATIONS
19	High-Order Feature Learning for Multi-Atlas Based Label Fusion: Application to Brain Segmentation With MRI. IEEE Transactions on Image Processing, 2020, 29, 2702-2713.	6.0	30
20	A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis. Frontiers in Neuroscience, 2020, 14, 779.	1.4	111
21	Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification With Chest CT. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2798-2805.	3.9	149
22	A novel node-level structure embedding and alignment representation of structural networks for brain disease analysis. Medical Image Analysis, 2020, 65, 101755.	7.0	10
23	Latent correlation embedded discriminative multi-modal data fusion. Signal Processing, 2020, 171, 107466.	2.1	11
24	Unified Brain Network with Functional and Structural Data. Lecture Notes in Computer Science, 2020, , 114-123.	1.0	8
25	Constructing High-Order Dynamic Functional Connectivity Networks from Resting-State fMRI for Brain Dementia Identification. Lecture Notes in Computer Science, 2020, , 303-311.	1.0	3
26	Transport-Based Joint Distribution Alignment for Multi-site Autism Spectrum Disorder Diagnosis Using Resting-State fMRI. Lecture Notes in Computer Science, 2020, , 444-453.	1.0	6
27	Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning. Brain Imaging and Behavior, 2019, 13, 879-892.	1.1	31
28	Hybrid Functional Brain Network With First-Order and Second-Order Information for Computer-Aided Diagnosis of Schizophrenia. Frontiers in Neuroscience, 2019, 13, 603.	1.4	19
29	Functional Connectivity Network Analysis with Discriminative Hub Detection for Brain Disease Identification. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 1198-1205.	3.6	14
30	Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data. Medical Image Analysis, 2019, 53, 111-122.	7.0	36
31	Multi-modal AD classification via self-paced latent correlation analysis. Neurocomputing, 2019, 355, 143-154.	3.5	26
32	Reliability-based robust multi-atlas label fusion for brain MRI segmentation. Artificial Intelligence in Medicine, 2019, 96, 12-24.	3.8	12
33	Discovering network phenotype between genetic risk factors and disease status via diagnosis-aligned multi-modality regression method in Alzheimer's disease. Bioinformatics, 2019, 35, 1948-1957.	1.8	31
34	Robust multi-label transfer feature learning for early diagnosis of Alzheimer's disease. Brain Imaging and Behavior, 2019, 13, 138-153.	1.1	50
35	Multi-modality Low-Rank Learning Fused First-Order and Second-Order Information for Computer-Aided Diagnosis of Schizophrenia. Lecture Notes in Computer Science, 2019, , 356-368.	1.0	2
36	Adaptive Thresholding of Functional Connectivity Networks for fMRI-Based Brain Disease Analysis. Lecture Notes in Computer Science, 2019, , 18-26.	1.0	1

#	Article	IF	CITATIONS
37	Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis. IEEE Transactions on Image Processing, 2018, 27, 2340-2353.	6.0	72
38	Ordinal Pattern: A New Descriptor for Brain Connectivity Networks. IEEE Transactions on Medical Imaging, 2018, 37, 1711-1722.	5.4	37
39	Multi-modality Feature Learning in Diagnoses of Alzheimer's Disease. Intelligent Systems Reference Library, 2018, , 3-30.	1.0	1
40	An Organelle Correlation-Guided Feature Selection Approach for Classifying Multi-Label Subcellular Bio-Images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 828-838.	1.9	16
41	Subnetwork mining on functional connectivity network for classification of minimal hepatic encephalopathy. Brain Imaging and Behavior, 2018, 12, 901-911.	1.1	6
42	Multi-modality feature selection with adaptive similarity learning for classification of Alzheimer's disease. , 2018, , .		3
43	Node Based Row-Filter Convolutional Neural Network for Brain Network Classification. Lecture Notes in Computer Science, 2018, , 1069-1080.	1.0	7
44	Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease. IEEE Transactions on Biomedical Engineering, 2017, 64, 238-249.	2.5	49
45	Iterative sparsity score for feature selection and its extension for multimodal data. Neurocomputing, 2017, 259, 146-153.	3 . 5	4
46	Deep model-based feature extraction for predicting protein subcellular localizations from bio-images. Frontiers of Computer Science, 2017, 11, 243-252.	1.6	16
47	Multi-modal dimensionality reduction using effective distance. Neurocomputing, 2017, 259, 130-139.	3 . 5	8
48	Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease. Neuroinformatics, 2017, 15, 115-132.	1.5	65
49	Multi-level Multi-task Structured Sparse Learning for Diagnosis of Schizophrenia Disease. Lecture Notes in Computer Science, 2017, 10435, 46-54.	1.0	1
50	Robust multi-atlas label propagation by deep sparse representation. Pattern Recognition, 2017, 63, 511-517.	5.1	31
51	Semi-supervised feature selection with sparse representation for hyperspectral image classification. International Journal of Machine Intelligence and Sensory Signal Processing, 2017, 2, 67.	0.2	0
52	Human cell structure-driven model construction for predicting protein subcellular location from biological images. Bioinformatics, 2016, 32, 114-121.	1.8	22
53	Sub-network Based Kernels for Brain Network Classification. , 2016, , .		5
54	Multi-view dimensionality reduction via canonical random correlation analysis. Frontiers of Computer Science, 2016, 10, 856-869.	1.6	10

#	Article	IF	Citations
55	Inherent Structure-Based Multiview Learning With Multitemplate Feature Representation for Alzheimer's Disease Diagnosis. IEEE Transactions on Biomedical Engineering, 2016, 63, 1473-1482.	2.5	96
56	Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Computerized Medical Imaging and Graphics, 2016, 52, 82-88.	3.5	49
57	The New Graph Kernels on Connectivity Networks for Identification of MCI. Lecture Notes in Computer Science, 2016, , 12-20.	1.0	0
58	Canonical sparse cross-view correlation analysis. Neurocomputing, 2016, 191, 263-272.	3.5	20
59	Identifying Multimodal Intermediate Phenotypes Between Genetic Risk Factors and Disease Status in Alzheimer's Disease. Neuroinformatics, 2016, 14, 439-452.	1.5	26
60	Feature selection with effective distance. Neurocomputing, 2016, 215, 100-109.	3.5	35
61	Joint Binary Classifier Learning for ECOC-Based Multi-Class Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38, 2335-2341.	9.7	71
62	Hyper-connectivity of functional networks for brain disease diagnosis. Medical Image Analysis, 2016, 32, 84-100.	7.0	113
63	Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment. IEEE Transactions on Medical Imaging, 2016, 35, 1463-1474.	5.4	165
64	Discriminative multi-task feature selection for multi-modality classification of Alzheimer's disease. Brain Imaging and Behavior, 2016, 10, 739-749.	1.1	36
65	Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment. Brain Imaging and Behavior, 2016, 10, 1148-1159.	1.1	72
66	Pairwise Constraint-Guided Sparse Learning for Feature Selection. IEEE Transactions on Cybernetics, 2016, 46, 298-310.	6.2	75
67	Ordinal Patterns for Connectivity Networks in Brain Disease Diagnosis. Lecture Notes in Computer Science, 2016, , 1-9.	1.0	7
68	Relationship Induced Multi-atlas Learning for Alzheimer's Disease Diagnosis. Lecture Notes in Computer Science, 2016, , 24-33.	1.0	0
69	Label-Alignment-Based Multi-Task Feature Selection for Multimodal Classification of Brain Disease. Lecture Notes in Computer Science, 2016, , 51-59.	1.0	0
70	Identification of Conversion from Normal Elderly Cognition to Alzheimer's Disease using Multimodal Support Vector Machine. Journal of Alzheimer's Disease, 2015, 47, 1057-1067.	1.2	16
71	Manifold regularized multitask feature learning for multimodality disease classification. Human Brain Mapping, 2015, 36, 489-507.	1.9	114
72	Discriminative Multi-task Feature Selection for Multi-modality Based AD/MCI Classification., 2015,,.		4

#	Article	IF	CITATIONS
73	Viewâ€centralized multiâ€atlas classification for Alzheimer's disease diagnosis. Human Brain Mapping, 2015, 36, 1847-1865.	1.9	88
74	Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging and Behavior, 2015, 9, 913-926.	1.1	81
75	Domain Transfer Learning for MCI Conversion Prediction. IEEE Transactions on Biomedical Engineering, 2015, 62, 1805-1817.	2.5	148
76	Inherent Structure-Guided Multi-view Learning for Alzheimer's Disease and Mild Cognitive Impairment Classification. Lecture Notes in Computer Science, 2015, 9352, 296-303.	1.0	1
77	Multimodal Multi-label Transfer Learning for Early Diagnosis of Alzheimer's Disease. Lecture Notes in Computer Science, 2015, , 238-245.	1.0	1
78	SPARSITY SCORE: A NOVEL GRAPH-PRESERVING FEATURE SELECTION METHOD. International Journal of Pattern Recognition and Artificial Intelligence, 2014, 28, 1450009.	0.7	28
79	Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Human Brain Mapping, 2014, 35, 2876-2897.	1.9	98
80	Combining Multiple Network Features for Mild Cognitive Impairment Classification. , 2014, , .		1
81	A generative probability model of joint label fusion for multi-atlas based brain segmentation. Medical Image Analysis, 2014, 18, 881-890.	7.0	107
82	Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Structure and Function, 2014, 219, 641-656.	1.2	160
83	Identifying Informative Imaging Biomarkers via Tree Structured Sparse Learning for AD Diagnosis. Neuroinformatics, 2014, 12, 381-394.	1.5	21
84	Attribute relation learning for zero-shot classification. Neurocomputing, 2014, 139, 34-46.	3.5	43
85	Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis. Human Brain Mapping, 2014, 35, 1305-1319.	1.9	113
86	Frequent and Discriminative Subnetwork Mining for Mild Cognitive Impairment Classification. Brain Connectivity, 2014, 4, 347-360.	0.8	24
87	Integration of Network Topological and Connectivity Properties for Neuroimaging Classification. IEEE Transactions on Biomedical Engineering, 2014, 61, 576-589.	2.5	125
88	Two-Stage Cost-Sensitive Learning for Software Defect Prediction. IEEE Transactions on Reliability, 2014, 63, 676-686.	3.5	110
89	Brain Disease Classification and Progression Using Machine Learning Techniques., 2014,, 3-32.		1
90	Brain Connectivity Hyper-Network for MCI Classification. Lecture Notes in Computer Science, 2014, 17, 724-732.	1.0	21

#	Article	IF	CITATIONS
91	Identifying Genetic Associations with MRI-derived Measures via Tree-Guided Sparse Learning. Lecture Notes in Computer Science, 2014, 17, 757-764.	1.0	11
92	Machine Learning Techniques for AD/MCI Diagnosis and Prognosis. Intelligent Systems Reference Library, 2014, , 147-179.	1.0	11
93	A New Locality-Preserving Canonical Correlation Analysis Algorithm for Multi-View Dimensionality Reduction. Neural Processing Letters, 2013, 37, 135-146.	2.0	45
94	Semi-Supervised Multimodal Relevance Vector Regression Improves Cognitive Performance Estimation from Imaging and Biological Biomarkers. Neuroinformatics, 2013, 11, 339-353.	1.5	20
95	Learning mid-perpendicular hyperplane similarity from cannot-link constraints. Neurocomputing, 2013, 113, 195-203.	3. 5	3
96	Integrating Multiple Network Properties for MCI Identification. Lecture Notes in Computer Science, 2013, , 9-16.	1.0	4
97	Ensemble Universum SVM Learning for Multimodal Classification of Alzheimer's Disease. Lecture Notes in Computer Science, 2013, , 227-234.	1.0	4
98	Sparse Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction. Lecture Notes in Computer Science, 2013, , 251-259.	1.0	3
99	Manifold Regularized Multi-Task Feature Selection for Multi-Modality Classification in Alzheimer's Disease. Lecture Notes in Computer Science, 2013, 16, 275-283.	1.0	30
100	Domain Transfer Learning for MCI Conversion Prediction. Lecture Notes in Computer Science, 2012, 15, 82-90.	1.0	38
101	Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage, 2012, 59, 895-907.	2.1	576
102	Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 2012, 59, 2045-2056.	2.1	334
103	Ensemble sparse classification of Alzheimer's disease. Neurolmage, 2012, 60, 1106-1116.	2.1	278
104	Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers. PLoS ONE, 2012, 7, e33182.	1,1	226
105	Tree-Guided Sparse Coding for Brain Disease Classification. Lecture Notes in Computer Science, 2012, 15, 239-247.	1.0	18
106	Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis. Lecture Notes in Computer Science, 2012, 15, 264-271.	1.0	15
107	Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation. Lecture Notes in Computer Science, 2012, , 94-102.	1.0	43
108	Hierarchical Ensemble of Multi-level Classifiers for Diagnosis of Alzheimer's Disease. Lecture Notes in Computer Science, 2012, , 27-35.	1.0	12

#	Article	IF	Citations
109	Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neurolmage, 2011, 55, 856-867.	2.1	1,081
110	Semi-supervised multimodal classification of alzheimer's disease., 2011,,.		24
111	Semisupervised Dimensionality Reduction With Pairwise Constraints for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 369-373.	1.4	80
112	A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples. Pattern Recognition, 2011, 44, 1162-1171.	5.1	27
113	MultiCost: Multi-stage Cost-sensitive Classification of Alzheimer's Disease. Lecture Notes in Computer Science, 2011, , 344-351.	1.0	6
114	Predicting Clinical Scores Using Semi-supervised Multimodal Relevance Vector Regression. Lecture Notes in Computer Science, 2011, , 241-248.	1.0	3
115	Bagging Constraint Score for feature selection with pairwise constraints. Pattern Recognition, 2010, 43, 2106-2118.	5.1	45
116	A New Canonical Correlation Analysis Algorithm with Local Discrimination. Neural Processing Letters, 2010, 31, 1-15.	2.0	70
117	Locality sensitive C-means clustering algorithms. Neurocomputing, 2010, 73, 2935-2943.	3.5	27
118	Semi-supervised clustering with metric learning: An adaptive kernel method. Pattern Recognition, 2010, 43, 1320-1333.	5.1	99
119	A Multiobjective Simultaneous Learning Framework for Clustering and Classification. IEEE Transactions on Neural Networks, 2010, 21, 185-200.	4.8	47
120	A simultaneous learning framework for clustering and classification. Pattern Recognition, 2009, 42, 1248-1259.	5.1	27
121	Constraint Score: A new filter method for feature selection with pairwise constraints. Pattern Recognition, 2008, 41, 1440-1451.	5.1	179
122	Pattern Representation in Feature Extraction and Classifier Design: Matrix Versus Vector. IEEE Transactions on Neural Networks, 2008, 19, 758-769.	4.8	44
123	Semi-Supervised Dimensionality Reduction. , 2007, , .		241
124	Comments on "Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE Transactions on Neural Networks, 2007, 18, 1862-1864.	4.8	53
125	Robust fuzzy relational classifier incorporating the soft class labels. Pattern Recognition Letters, 2007, 28, 2250-2263.	2.6	22
126	Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition, 2007, 40, 825-838.	5.1	937

#	Article	IF	CITATIONS
127	Adaptive Kernel Principal Component Analysis with Unsupervised Learning of Kernels. IEEE International Conference on Data Mining, 2006, , .	0.0	8
128	Learning the kernel parameters in kernel minimum distance classifier. Pattern Recognition, 2006, 39, 133-135.	5.1	44
129	Diagonal principal component analysis for face recognition. Pattern Recognition, 2006, 39, 140-142.	5.1	118
130	Recognizing Face or Object from a Single Image: Linear vs. Kernel Methods on 2D Patterns. Lecture Notes in Computer Science, 2006, , 889-897.	1.0	7
131	Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA. Pattern Recognition Letters, 2005, 26, 1157-1167.	2.6	86
132	A new face recognition method based on SVD perturbation for single example image per person. Applied Mathematics and Computation, 2005, 163, 895-907.	1.4	150
133	: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing, 2005, 69, 224-231.	3.5	545
134	Enhanced (PC)2A for face recognition with one training image per person. Pattern Recognition Letters, 2004, 25, 1173-1181.	2.6	145
135	Robust Image Segmentation Using FCM With Spatial Constraints Based on New Kernel-Induced Distance Measure. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34, 1907-1916.	5 . 5	944