
Sergei A Alekseev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of Porous Silicon Nanostructures as Hydrogen Reservoirs. Journal of Physical Chemistry B, 2005, 109, 19711-19718.	1.2	80
2	Hydrogen production from nano-porous Si powder formed by stain etching. International Journal of Hydrogen Energy, 2010, 35, 6773-6778.	3.8	51
3	Influence of the interfacial chemical environment on the luminescence of 3Cî—,SiC nanoparticles. Journal of Applied Physics, 2010, 107, 013503.	1.1	49
4	Organosilicas with Covalently Bonded Groups under Thermochemical Treatment. Chemistry of Materials, 2006, 18, 1981-1987.	3.2	39
5	Size and Surface Chemistry Tuning of Silicon Carbide Nanoparticles. Langmuir, 2017, 33, 13561-13571.	1.6	39
6	Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red Rugate filters. Sensors and Actuators B: Chemical, 2007, 120, 706-711.	4.0	38
7	Fourier Transform Infrared Spectroscopy and Temperature-Programmed Desorption Mass Spectrometry Study of Surface Chemistry of Porous 6H-SiC. Chemistry of Materials, 2007, 19, 2189-2194.	3.2	34
8	Are Fluorescent Silicon Nanoparticles Formed in a One-Pot Aqueous Synthesis?. Chemistry of Materials, 2019, 31, 7167-7172.	3.2	32
9	Charge-driven selective localization of fluorescent nanoparticles in live cells. Nanotechnology, 2012, 23, 315101.	1.3	31
10	Application of Infrared Interferometry for Quantitative Analysis of Chemical Groups Grafted onto the Internal Surface of Porous Silicon Nanostructures. Journal of Physical Chemistry C, 2007, 111, 15217-15222.	1.5	27
11	Photoluminescence of silicon nanoparticles chemically modified by alkyl groups and dispersed in low-polar liquids. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	26
12	Influence of palladium particles impregnation on hydrogen behavior in meso-porous silicon. Journal of Alloys and Compounds, 2010, 492, 466-472.	2.8	24
13	Nanoscale morphology tuning of mesoporous Ge: electrochemical mechanisms. Electrochimica Acta, 2015, 180, 545-554.	2.6	21
14	Electrochemical Synthesis of Carbon Fluorooxide Nanoparticles from 3C-SiC Substrates. Journal of Physical Chemistry C, 2015, 119, 20503-20514.	1.5	21
15	Chemically modified porous silicon for laser desorption/ionization mass spectrometry of ionic dyes. Journal of Mass Spectrometry, 2009, 44, 1234-1240.	0.7	20
16	Photoluminescence thermometry with alkylâ€ŧerminated silicon nanoparticles dispersed in lowâ€polar liquids. Physica Status Solidi - Rapid Research Letters, 2013, 7, 414-417.	1.2	20
17	Kinetics of Hydrogen Generation from Oxidation of Hydrogenated Silicon Nanocrystals in Aqueous Solutions. Nanomaterials, 2020, 10, 1413.	1.9	19
18	Carbon fluoroxide nanoparticles as fluorescent labels and sonosensitizers for theranostic applications. Science and Technology of Advanced Materials, 2015, 16, 044601.	2.8	18

SERGEI A ALEKSEEV

#	Article	IF	CITATIONS
19	Improvement of amperometric transducer selectivity using nanosized phenylenediamine films. Nanoscale Research Letters, 2017, 12, 594.	3.1	16
20	Mesoporous SiC with Potential Catalytic Application by Electrochemical Dissolution of Polycrystalline 3C-SiC. ACS Applied Nano Materials, 2018, 1, 2609-2620.	2.4	16
21	Plasmon-controlled narrower and blue-shifted fluorescence emission in (Au@SiO2)SiC nanohybrids. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	15
22	Folate-modified silicon carbide nanoparticles as multiphoton imaging nanoprobes for cancer-cell-specific labeling. RSC Advances, 2017, 7, 27361-27369.	1.7	15
23	Nanocrystallite–liquid phase transition in porous matrices with chemically functionalized surfaces. Physical Chemistry Chemical Physics, 2019, 21, 24674-24683.	1.3	13
24	Superior Fischer-Tropsch performance of uniform cobalt nanoparticles deposited into mesoporous SiC. Journal of Catalysis, 2020, 383, 297-303.	3.1	13
25	Luminescence nanothermometry with alkyl-capped silicon nanoparticles dispersed in nonpolar liquids. Nanoscale Research Letters, 2014, 9, 94.	3.1	12
26	Development of three-enzyme lactose amperometric biosensor modified by nanosized poly (meta-phenylenediamine) film. Applied Nanoscience (Switzerland), 2022, 12, 1267-1274.	1.6	12
27	Effect of Silanol Groups on the Acidic and Catalytic Properties of Alkylsulphoacidic Silicas and SiO2/Nafion Nanocomposites. Adsorption Science and Technology, 2004, 22, 615-625.	1.5	11
28	Covalent grafting of ion-exchanging groups on porous silicon for microsystem applications. Sensors and Actuators B: Chemical, 2007, 126, 120-125.	4.0	11
29	Thermal conductivity of nanofluids formed by carbon flurooxide mesoparticles. SN Applied Sciences, 2019, 1, 1.	1.5	11
30	Ethanol gas sensing performance of electrochemically anodized freestanding porous SiC. Diamond and Related Materials, 2019, 91, 84-89.	1.8	11
31	Synthesis and evaluation of manganese dioxide with layered structure as an adsorbent for selective removal of strontium ions from aqueous solution. SN Applied Sciences, 2020, 2, 1.	1.5	11
32	Size tuning of luminescent silicon nanoparticles with meso-porous silicon membranes. Journal of Colloid and Interface Science, 2011, 364, 65-70.	5.0	10
33	Fine band structure of the vibrational spectra of fullerite C60 and enhancement of intermolecular interaction in high-temperature phase. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.78	84 301 24 rgB	T /Øverlock 1
34	Fluorescent (Au@SiO2)SiC Nanohybrids: Influence of Gold Nanoparticle Diameter and SiC Nanoparticle Surface Density. Plasmonics, 2013, 8, 85-92.	1.8	9
35	Determining the impact of hydrofluoric acid on surface states of as-prepared and chemically modified Si nanocrystals. RSC Advances, 2016, 6, 3723-3728.	1.7	9
36	Investigation of the structure and mechanisms of thermal motion in nanostructured undecylenic acid. Molecular Crystals and Liquid Crystals, 2020, 701, 16-27.	0.4	9

SERGEI A ALEKSEEV

#	Article	IF	CITATIONS
37	Photoacoustic thermal conductivity determination of layered structures PS-Si: piezoelectric detection. Journal of Physics: Conference Series, 2011, 278, 012003.	0.3	8
38	Trypsinization-dependent cell labeling with fluorescent nanoparticles. Nanoscale Research Letters, 2014, 9, 568.	3.1	8
39	Silicon Carbide with Uniformly Sized Spherical Mesopores from Butoxylated Silica Nanoparticles Template. Journal of Physical Chemistry C, 2014, 118, 23745-23750.	1.5	8
40	Fifty nanometer lines patterned into silica using water developable chitosan bioresist and electron beam lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	0.6	8
41	Combined Vibrational Spectroscopic and Theoretical Study on Nature of <i>c</i> -BN Powders Surface. Journal of Physical Chemistry C, 2010, 114, 1102-1109.	1.5	7
42	Luminescence behavior of silicon and carbon nanoparticles dispersed in low-polar liquids. Nanoscale Research Letters, 2012, 7, 365.	3.1	7
43	Synthesis and structure of grafted layer of silicas modified with alkanesulfonic acid. Russian Chemical Bulletin, 2003, 52, 364-369.	0.4	6
44	Structural and photocatalytic properties of silicon carbide powder and nanowires modified by gold nanoparticles. Research on Chemical Intermediates, 2019, 45, 4081-4100.	1.3	6
45	Title is missing!. Theoretical and Experimental Chemistry, 2002, 38, 317-323.	0.2	5
46	Porous silicon based microdevice for reversed phase liquid chromatography. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1777-1781.	0.8	5
47	Delivery of SiC-based nanoparticles into live cells driven by cell-penetrating peptides SAP and SAP-E. RSC Advances, 2015, 5, 20498-20502.	1.7	5
48	Mesoporous silicon carbide via nanocasting of Ludox® xerogel. RSC Advances, 2016, 6, 108828-108839.	1.7	5
49	Impact of Water Adsorption on Nonlinear Optical Properties of Functionalized Porous Silicon. Nanoscale Research Letters, 2017, 12, 69.	3.1	5
50	Characterization of sol–gel-derived polyhydridosiloxane pre-ceramic polymer. Materials Chemistry and Physics, 2008, 108, 24-28.	2.0	4
51	SiC as a Biocompatible Marker for Cell Labeling. , 2012, , 377-429.		4
52	Topological solitons in aliphatic systems with a restricted translational mobility. Chemical Physics, 2020, 539, 110959.	0.9	4
53	Topological solitons in crystals formed by aliphatic molecules with dimeric rings. Molecular Crystals and Liquid Crystals, 2021, 721, 74-85.	0.4	4
54	Study of cooperative effects of silanols on modified silica by dielectric relaxation method. Macromolecular Symposia, 1998, 136, 9-12.	0.4	3

SERGEI A ALEKSEEV

#	Article	IF	CITATIONS
55	Template-directed synthesis of dually porous periodic organosilicas with 1,5-bis-(2′-ethyl)-xylene bridging groups. Materials Chemistry and Physics, 2009, 114, 485-489.	2.0	3
56	Photoelectric Signal Conversion in Deep p-n Junction for Detection of Carbon Nanotubes with Adsorbed SDBS in Aqueous Solution. Journal of Nano- and Electronic Physics, 2017, 9, 04020-1-04020-6.	0.2	3
57	The impact of the silica gel structure and surface chemistry on the melting of aliphatic nanocrystals: Thermodynamic model and experiment. Journal of Physics and Chemistry of Solids, 2022, 161, 110426.	1.9	3
58	Incorporation of hydrogen in porous silicon nanocrystallites. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1307-1311.	0.8	2
59	Mesoporous Organosilicas with Arylsulfonic Acid Bridging Groups in the Alkylation of Isobutylene by Ethanol. Theoretical and Experimental Chemistry, 2014, 49, 381-389.	0.2	2
60	Impact of Carbon Fluoroxide Nanoparticles on Cell Proliferation. Nanomaterials, 2021, 11, 3168.	1.9	2
61	Investigation of relaxation processes and phase transitions in the silica gel-undecylenic acid system using IR spectra in a wide temperature range. Molecular Crystals and Liquid Crystals, 2022, 748, 9-18.	0.4	2
62	Sorption preconcentration of cadmium and lead ions as complexes with unithiol on a silica surface modified by quaternary ammonium salt groups. Journal of Analytical Chemistry, 2013, 68, 206-211.	0.4	1
63	Preparation, Luminescent Properties and Bioimaging Application of Quantum Dots Based on Si and SiC. Engineering Materials, 2014, , 323-348.	0.3	1
64	Formation and properties of SiC and C particle nanoâ€colloids in nonâ€polar liquids. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 153-157.	0.8	1
65	Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid. Nanoscale Research Letters, 2016, 11, 149.	3.1	1
66	Carbon screen-printed electrodes modified with composite films based on silica for H ₂ O ₂ determination. Molecular Crystals and Liquid Crystals, 2021, 718, 42-49.	0.4	1
67	Thermochemical Methods for the Characterization of the Organosilicas with Immobilized Aminophosphonic Acid. Methods and Objects of Chemical Analysis, 2015, 10, 45-52.	0.4	1
68	Terminal Amines, Nitriles, and Olefins through Catalytic CO Hydrogenation in the Presence of Ammonia. ACS Catalysis, 0, , 14977-14985.	5.5	1
69	Organosilica materials with 1,5-bis-(2'-ethyl)-2,4-dimethyl benzene bridging groups. Theoretical and Experimental Chemistry, 2004, 40, 389-395.	0.2	Ο
70	Study of Porous Silicon Nanostructures as Hydrogen Reservoirs ChemInform, 2006, 37, no.	0.1	0
71	Sorption concentration of IO3 â^ and Iâ^ on anion exchangers AV-17 and silicas modified with tertiary ammonium groups. Journal of Water Chemistry and Technology, 2011, 33, 248-254.	0.2	0
72	Surface-Assisted Laser Desorption Ionization of Low Molecular Organic Substances on Oxidized		0

Porous Silicon. , 2009, , 45-50.