MartÃ-n R Pedroza-Montero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187623/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoluminescence and Thermoluminescence Properties of Nanophosphors, YVO4:Eu3+ and YVO4:Eu3+:Dy3+. Journal of Cluster Science, 2022, 33, 653-664.	3.3	5
2	Identification of refractory zirconia from catalytic converters in dust: An emerging pollutant in urban environments. Science of the Total Environment, 2021, 760, 143384.	8.0	7
3	Thermometric Characterization of Fluorescent Nanodiamonds Suitable for Biomedical Applications. Applied Sciences (Switzerland), 2021, 11, 4065.	2.5	6
4	Nanoscale Changes on RBC Membrane Induced by Storage and Ionizing Radiation: A Mini-Review. Frontiers in Physiology, 2021, 12, 669455.	2.8	9
5	Conformational Behavior, Topographical Features, and Antioxidant Activity of Partly De-Esterified Arabinoxylans. Polymers, 2021, 13, 2794.	4.5	4
6	Raman spectroscopy and silver nanoparticles for efficient detection of membrane proteins in living cells. Nanotechnology, 2021, 32, 495101.	2.6	2
7	In vitro assessment oral and respiratory bioaccessibility of Mn in school dust: Insight of seasonality in a semiarid environment. Applied Geochemistry, 2021, 134, 105102.	3.0	9
8	Effects of Untreated Drinking Water at Three Indigenous Yaqui Towns in Mexico: Insights from a Murine Model. International Journal of Environmental Research and Public Health, 2021, 18, 805.	2.6	5
9	NANOPARTÀULAS: EFECTOS EN LA SALUD HUMANA Y EL MEDIO AMBIENTE. Epistemus, 2021, 15, .	0.1	0
10	TEMPERATURA CORPORAL, TERMÓMETROS Y SALUD. Epistemus, 2021, 15, .	0.1	0
11	Release of Nanoparticles in the Environment and Catalytic Converters Ageing. Nanomaterials, 2021, 11, 3406.	4.1	5
12	Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. Science of the Total Environment, 2020, 713, 136481.	8.0	24
13	Albumin-Albumin/Lactosylated Core-Shell Nanoparticles: Therapy to Treat Hepatocellular Carcinoma for Controlled Delivery of Doxorubicin. Molecules, 2020, 25, 5432.	3.8	10
14	A magnetic immunoconjugate nanoplatform for easy colorimetric detection of the NS1 protein of dengue virus in infected serum. Nanoscale Advances, 2020, 2, 3017-3026.	4.6	3
15	Broadband transparency with all-dielectric metasurfaces engraved on silicon waveguide facets: effect of inverted and extruded features based on Babinet's principle. Nanoscale Advances, 2020, 2, 2977-2985.	4.6	7
16	Combination of ultraviolet lightâ€C and clove essential oil to inactivate <scp><i>Salmonella</i></scp> <i>Typhimurium</i> biofilms on stainless steel. Journal of Food Safety, 2020, 40, e12788.	2.3	12
17	Identification of inhalable rutile and polycyclic aromatic hydrocarbons (PAHs) nanoparticles in the atmospheric dust. Environmental Pollution, 2020, 260, 114006.	7.5	9
18	Atomic force microscopy and Raman spectra profile of blood components associated with exposure to cigarette smoking. RSC Advances, 2020, 10, 11971-11981.	3.6	3

#	Article	IF	CITATIONS
19	Characterization of the internal state of NV center in diamond and second quantization formalism. Revista Mexicana De FÃsica, 2020, 66, 814-823.	0.4	1
20	Confined clustering of AuCu nanoparticles under ambient conditions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125985.	2.1	8
21	Lactosylated Albumin Nanoparticles: Potential Drug Nanovehicles with Selective Targeting Toward an In Vitro Model of Hepatocellular Carcinoma. Molecules, 2019, 24, 1382.	3.8	9
22	Temperature stimuliâ€responsive nanoparticles from chitosanâ€ <i>graft</i> â€poly(<i>N</i> â€vinylcaprolactam) as a drug delivery system. Journal of Applied Polymer Science, 2019, 136, 47831.	2.6	18
23	Specific capture of glycosylated graphene oxide by an asialoglycoprotein receptor: a strategic approach for liver-targeting. RSC Advances, 2019, 9, 9899-9906.	3.6	9
24	Partial removal of protein associated with arabinoxylans: Impact on the viscoelasticity, crosslinking content, and microstructure of the gels formed. Journal of Applied Polymer Science, 2019, 136, 47300.	2.6	22
25	Effect of gamma irradiation doses in the structural and functional properties of mice splenic cells. International Journal of Radiation Biology, 2019, 95, 286-297.	1.8	0
26	Electrosprayâ€assisted fabrication of coreâ€shell arabinoxylan gel particles for insulin and probiotics entrapment. Journal of Applied Polymer Science, 2018, 135, 46411.	2.6	34
27	Antioxidant activity of hydrated carboxylated nanodiamonds and its influence on water <i>l³</i> -radiolysis. Nanotechnology, 2018, 29, 125707.	2.6	10
28	Source apportionment and environmental fate of lead chromates in atmospheric dust in arid environments. Science of the Total Environment, 2018, 630, 1596-1607.	8.0	29
29	A nanodiamond-fluorescein conjugate for cell studies. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 015013.	1.5	2
30	Denoising and Principal Component Analysis of Amplified Raman Spectra from Red Blood Cells with Added Silver Nanoparticles. Journal of Nanomaterials, 2018, 2018, 1-9.	2.7	3
31	Nanodiamonds and gold nanoparticles to obtain a hybrid nanostructure with potential applications in biomedicine. Nanotechnology, 2018, 29, 435101.	2.6	3
32	Effect of temperature on the synthesis of silver nanoparticles with polyethylene glycol: new insights into the reduction mechanism. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	26
33	Nano alterations of membrane structure on both Î ³ -irradiated and stored human erythrocytes. International Journal of Radiation Biology, 2017, 93, 1306-1311.	1.8	12
34	Deagglomeration and characterization of detonation nanodiamonds for biomedical applications. Journal of Applied Biomedicine, 2017, 15, 15-21.	1.7	19
35	The Influence of Monsoon Climate on Latewood Growth of Southwestern Ponderosa Pine. Forests, 2017, 8, 140.	2.1	24
36	Syneresis in Gels of Highly Ferulated Arabinoxylans: Characterization of Covalent Cross-Linking, Rheology, and Microstructure. Polymers, 2017, 9, 164.	4.5	22

#	Article	IF	CITATIONS
37	Molecular recognition of glyconanoparticles by RCA and E. coli K88 - designing transports for targeted therapy. Acta Biochimica Polonica, 2017, 64, 671-677.	0.5	6
38	Thermally stimulated luminescence and persistent luminescence of \hat{l}^2 -irradiated YAC:Pr3+ nanophosphors produced by combustion synthesis. Radiation Measurements, 2016, 94, 35-40.	1.4	8
39	Magnetite Nanoparticles Functionalized with Vitamin E Analogues: Anticancer Effects. Materials Today: Proceedings, 2016, 3, 703-707.	1.8	1
40	Carboxylated nanodiamonds inhibit Î ³ -irradiation damage of human red blood cells. Nanoscale, 2016, 8, 7189-7196.	5.6	9
41	Thermoluminescence studies on HPHT diamond crystals exposed to βâ€irradiation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2507-2511.	1.8	3
42	Carboxylated nanodiamond and reâ€oxygenation process of gamma irradiated red blood cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2437-2444.	1.8	8
43	Persistent luminescence, TL and OSL characterization of beta irradiated SrAl2O4:Eu2+, Dy3+ combustion synthesized phosphor. Nuclear Instruments & Methods in Physics Research B, 2014, 326, 99-102.	1.4	14
44	AG, TL, and IRSL dosimetric properties in Xâ€ray irradiated HPHT diamond crystals. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2359-2362.	1.8	4
45	Afterglow and thermoluminescence properties in <scp>HPHT</scp> diamond crystals under beta irradiation. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2088-2094.	1.8	5
46	Assessment of OEP health's risk in nuclear medicine. , 2012, , .		0
47	A novel fitting method for evaluating the thermal quenching parameters of TL with an application to undoped CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1779-1785.	1.8	2
48	Persistent luminescence and thermoluminescence of UV/VIS -irradiated SrAl2O4: Eu2+, Dy3+ phosphor. Radiation Measurements, 2011, 46, 1417-1420.	1.4	11
49	Dose effects on the long persistent luminescence properties of beta irradiated SrAl2O4:Eu2+, Dy3+ phosphor. Radiation Measurements, 2010, 45, 311-313.	1.4	8
50	Heating rate effects on the TL characteristics of hot filament CVD diamond film. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2114-2118.	1.8	1
51	Comparative study of TL created in undoped CVD diamond by <i>β</i> rays, UV and visible light. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2119-2124.	1.8	3
52	Linear-supralinear-sublinear beta-ray dose dependences of TL, OSL and afterglow in undoped CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2125-2130.	1.8	9
53	Dosimetric Assessment of Mono-Crystalline CVD Diamonds Exposed to Beta and Ultraviolet Radiation. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0
54	Thermoluminescence assessment of 0.5, 1.0 and 4.0 µm thick HFCVD undoped diamond films. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2103-2108.	1.8	12

#	Article	IF	CITATIONS
55	Temperature dependence of persistent luminescence in β-irradiated SrAl2O4:Eu2+, Dy3+ phosphor. Journal of Luminescence, 2009, 129, 679-685.	3.1	30
56	Thermoluminescence properties of undoped and nitrogen-doped CVD diamond exposed to gamma radiation. Radiation Measurements, 2008, 43, 379-382.	1.4	11
57	The behavior of thermally and optically stimulated luminescence of long persistent phosphor after blue light illumination. Radiation Measurements, 2008, 43, 241-244.	1.4	25
58	Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4:Eu2+, Dy3+ phosphor. Journal of Luminescence, 2008, 128, 173-184.	3.1	41
59	CVD Diamond Applications as TL Radiation Dosimeters. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	0
60	On the use of MWCVD diamond as thermoluminescent gamma dosimeter. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 592-598.	1.4	5
61	Dose rate effects on the thermoluminescence kinetics properties of MWCVD diamond films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3053-3058.	1.8	5
62	Thermal annealing effects on the TL response of beta-irradiated HPHT Ib type synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3041-3046.	1.8	7
63	Afterglow and thermally stimulated luminescence induced by UV radiation in CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3047-3052.	1.8	7
64	Afterglow, TL and IRSL in beta-irradiated HPHT type Ib synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3167-3172.	1.8	4
65	All optical read-out radiation dosimeter using CVD synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3173-3178.	1.8	4
66	OSL and TL dosimeter characterization of boron doped CVD diamond films. Optical Materials, 2005, 27, 1231-1234.	3.6	6
67	TL, OSL, Raman spectroscopy and SEM characterization of boron doped diamond films. Physica Status Solidi A, 2005, 202, 2154-2159.	1.7	9
68	Thermoluminescence characterization of CVD diamond film exposed to UV and beta radiation. Physica Status Solidi A, 2003, 199, 125-130.	1.7	11
69	Thermoluminescence in CVD Diamond Films: Application to Actinometric Dosimetry. Radiation Protection Dosimetry, 2002, 100, 443-446.	0.8	4
70	Study of the Phototransferred Thermoluminescence in KCl:Eu2+ Phosphors. Radiation Protection Dosimetry, 2002, 100, 183-185.	0.8	2
71	Comparative investigations of TL and OSL in KCI:Eu ²⁺ crystals irradiated with UV and X-rays. Radiation Effects and Defects in Solids, 2001, 154, 319-324.	1.2	6
72	PHOTOTRANSFERRED THERMOLUMINESCENCE OF KCL:Eu2+ DOSEMETERS. , 2001, , .		0

PHOTOTRANSFERRED THERMOLUMINESCENCE OF KCL:Eu2+ DOSEMETERS., 2001, , . 72

#	Article	IF	CITATIONS
73	Thermoluminescence, Optical Stimulated Luminescence and Defect Creation in Europium Doped KCl and KBr Crystals. Physica Status Solidi (B): Basic Research, 2000, 220, 671-676.	1.5	15
74	Potassium Halide Detectors: Novel Results and Applications. Physica Status Solidi (B): Basic Research, 2000, 220, 663-669.	1.5	0
75	Electrical conductivity percolation in the (CdTe)1â^'xTexsystem. Applied Physics Letters, 1994, 65, 3254-3256.	3.3	8
76	Mites as a Potential Path for Ce-Ti Exposure of Amphibians. Frontiers in Environmental Science, 0, 10, .	3.3	0