Radoslaw Martin Cichy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187603/publications.pdf

Version: 2024-02-01

71 papers

3,793 citations

304743 22 h-index 51 g-index

84 all docs 84 docs citations

84 times ranked 2884 citing authors

#	Article	IF	Citations
1	Semantic scene-object consistency modulates N300/400 EEG components, but does not automatically facilitate object representations. Cerebral Cortex, 2022, 32, 3553-3567.	2.9	6
2	Modelling brain representations of abstract concepts. PLoS Computational Biology, 2022, 18, e1009837.	3.2	4
3	The spatiotemporal neural dynamics of object location representations in the human brain. Nature Human Behaviour, 2022, 6, 796-811.	12.0	21
4	Time-resolved multivariate pattern analysis of infant EEG data: A practical tutorial. Developmental Cognitive Neuroscience, 2022, 54, 101094.	4.0	13
5	Resolving the time course of visual and auditory object categorization. Journal of Neurophysiology, 2022, 127, 1622-1628.	1.8	6
6	Unraveling Representations in Scene-selective Brain Regions Using Scene-Parsing Deep Neural Networks. Journal of Cognitive Neuroscience, 2021, 33, 2032-2043.	2.3	11
7	Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies. ENeuro, 2021, 8, ENEURO.0362-20.2021.	1.9	4
8	Unveiling functions of the visual cortex using task-specific deep neural networks. PLoS Computational Biology, 2021, 17, e1009267.	3.2	31
9	Theta power and theta-gamma coupling during formation of novel representations in the infant brain. Journal of Vision, 2021, 21, 2528.	0.3	O
10	Perceived and mentally rotated contents are differentially represented in cortical depth of V1. Communications Biology, 2021, 4, 1069.	4.4	17
11	Coherent natural scene structure facilitates the extraction of task-relevant object information in visual cortex. Neurolmage, 2021, 240, 118365.	4.2	4
12	Temporal uncertainty enhances suppression of neural responses to predictable visual stimuli. Neurolmage, 2021, 239, 118314.	4.2	4
13	Dissociable Components of Information Encoding in Human Perception. Cerebral Cortex, 2021, 31, 5664-5675.	2.9	6
14	Parts and Wholes in Scene Processing. Journal of Cognitive Neuroscience, 2021, 34, 4-15.	2.3	8
15	Temporal dynamics of visual representations in the infant brain. Developmental Cognitive Neuroscience, 2020, 45, 100860.	4.0	13
16	Visual Imagery and Perception Share Neural Representations in the Alpha Frequency Band. Current Biology, 2020, 30, 2621-2627.e5.	3.9	83
17	A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time. Neuron, 2020, 107, 772-781.	8.1	68
18	Rapid contextualization of fragmented scene information in the human visual system. NeuroImage, 2020, 219, 117045.	4.2	12

#	Article	IF	CITATIONS
19	Real-world structure facilitates the rapid emergence of scene category information in visual brain signals. Journal of Neurophysiology, 2020, 124, 145-151.	1.8	16
20	Cortical sensitivity to natural scene structure. Human Brain Mapping, 2020, 41, 1286-1295.	3.6	27
21	Duality Diagram Similarity: A Generic Framework for Initialization Selection in Task Transfer Learning. Lecture Notes in Computer Science, 2020, , 497-513.	1.3	8
22	Perceived and mentally rotated contents are differentially represented in cortical layers of V1. Journal of Vision, 2020, 20, 766.	0.3	1
23	Reliability and Generalizability of Similarity-Based Fusion of MEG and fMRI Data in Human Ventral and Dorsal Visual Streams. Vision (Switzerland), 2019, 3, 8.	1.2	19
24	Object Vision in a Structured World. Trends in Cognitive Sciences, 2019, 23, 672-685.	7.8	99
25	The spatiotemporal neural dynamics underlying perceived similarity for real-world objects. Neurolmage, 2019, 194, 12-24.	4.2	48
26	The Neural Dynamics of Familiar Face Recognition. Cerebral Cortex, 2019, 29, 4775-4784.	2.9	22
27	Deep Neural Networks as Scientific Models. Trends in Cognitive Sciences, 2019, 23, 305-317.	7.8	254
28	The Algonauts Project. Nature Machine Intelligence, 2019, 1, 613-613.	16.0	6
29	Recurrence is required to capture the representational dynamics of the human visual system. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21854-21863.	7.1	266
30	A neural mechanism for contextualizing fragmented inputs during naturalistic vision. ELife, 2019, 8, .	6.0	21
31	Spatial schemata determine cortical representations of the environment. Journal of Vision, 2019, 19, 250a.	0.3	O
32	Scene Clutter and Attention Differentially Affect Object Category and Location Representations. Journal of Vision, 2019, 19, 171a.	0.3	1
33	Multivariate pattern analysis for MEG: A comparison of dissimilarity measures. NeuroImage, 2018, 173, 434-447.	4.2	122
34	Decoding the orientation of contrast edges from MEG evoked and induced responses. NeuroImage, 2018, 180, 267-279.	4.2	40
35	The representational dynamics of task and object processing in humans. ELife, 2018, 7, .	6.0	121
36	Typical visual-field locations enhance processing in object-selective channels of human occipital cortex. Journal of Neurophysiology, 2018, 120, 848-853.	1.8	23

#	Article	IF	Citations
37	Typical visual-field locations facilitate access to awareness for everyday objects. Cognition, 2018, 180, 118-122.	2.2	11
38	Scale-specific analysis of fMRI data on the irregular cortical surface. NeuroImage, 2018, 181, 370-381.	4.2	O
39	Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway. ELife, 2018, 7, .	6.0	86
40	Typical retinotopic locations impact the time course of object coding. NeuroImage, 2018, 176, 372-379.	4.2	19
41	Finding decodable information that can be read out in behaviour. Neurolmage, 2018, 179, 252-262.	4.2	60
42	Tracking the Spatiotemporal Neural Dynamics of Real-world Object Size and Animacy in the Human Brain. Journal of Cognitive Neuroscience, 2018, 30, 1559-1576.	2.3	36
43	Deep convolutional neural networks, features, and categories perform similarly at explaining primate high-level visual representations. , 2018, , .		10
44	Tracking tactile braille brain responses in space and time. Journal of Vision, 2018, 18, 1225.	0.3	0
45	The Time Courses of Object Category and Location Representations in the Human Brain Depend on Clutter. Journal of Vision, 2018, 18, 1150.	0.3	O
46	Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. Neurolmage, 2017, 153, 346-358.	4.2	146
47	Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160108.	4.0	31
48	Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space. Neurolmage, 2017, 158, 441-454.	4.2	98
49	Spatiotemporal dynamics of braille letter perception in blind readers. Journal of Vision, 2017, 17, 358.	0.3	1
50	Categorical selectivity in the visual pathway revealed by fMRI in awake macaques. Journal of Vision, 2017, 17, 231.	0.3	0
51	Multivariate pattern analysis of MEG and EEG reveals the dynamics of human object processing. Journal of Vision, 2017, 17, 479.	0.3	O
52	Characterizing the spatio-temporal dynamics of behavior-related neural activity during human visual object perception. Journal of Vision, 2017, 17, 1341.	0.3	1
53	Combining human MEG and fMRI data reveals the spatio-temporal dynamics of animacy and real-world object size. Journal of Vision, 2017, 17, 574.	0.3	1
54	Oscillatory signatures of object recognition across cortical space and time Journal of Vision, 2017, 17, 1346.	0.3	0

#	Article	IF	Citations
55	Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition. Cerebral Cortex, 2016, 26, 3563-3579.	2.9	138
56	Achim Stephan, Sven Walter (Eds.), Handbuch Kognitionswissenschaft. Phenomenology and the Cognitive Sciences, 2016, 15, 461-466.	1.8	O
57	Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific Reports, 2016, 6, 27755.	3.3	510
58	Neurodynamics of visual and auditory scene size representations. Journal of Vision, 2016, 16, 571.	0.3	O
59	Visual features versus categories: Explaining object representations in primate IT and deep neural networks with weighted representational modeling. Journal of Vision, 2016, 16, 511.	0.3	1
60	Parietal and early visual cortices encode working memory content across mental transformations. Neurolmage, 2015, 106, 198-206.	4.2	78
61	Non-holistic coding of objects in lateral occipital complex with and without attention. NeuroImage, 2015, 107, 356-363.	4.2	11
62	Spatial attention enhances object coding in local and distributed representations of the lateral occipital complex. NeuroImage, 2015, 116, 149-157.	4.2	13
63	Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans?. Neurolmage, 2015, 121, 193-204.	4.2	80
64	The effects of recurrent dynamics on ventral-stream representational geometry. Journal of Vision, 2015, 15, 1089.	0.3	2
65	The neural dynamics of letter perception in blind and sighted readers. Journal of Vision, 2015, 15, 126.	0.3	1
66	Resolving human object recognition in space and time. Nature Neuroscience, 2014, 17, 455-462.	14.8	654
67	The Neural Code for Face Orientation in the Human Fusiform Face Area. Journal of Neuroscience, 2014, 34, 12155-12167.	3.6	51
68	Probing principles of largeâ€scale object representation: Category preference and location encoding. Human Brain Mapping, 2013, 34, 1636-1651.	3.6	35
69	Imagery and Perception Share Cortical Representations of Content and Location. Cerebral Cortex, 2012, 22, 372-380.	2.9	175
70	Encoding the identity and location of objects in human LOC. NeuroImage, 2011, 54, 2297-2307.	4.2	111
71	Transcranial cortex stimulation and fMRI: Electrophysiological correlates of dual-pulse BOLD signal modulation. Neurolmage, 2008, 40, 631-643.	4.2	12