
## Igor M Savukov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9187558/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microtesla MRI of the human brain combined with MEG. Journal of Magnetic Resonance, 2008, 194, 115-120.                                                                                                               | 2.1  | 159       |
| 2  | MRI with an atomic magnetometer suitable for practical imaging applications. Journal of Magnetic<br>Resonance, 2009, 199, 188-191.                                                                                    | 2.1  | 89        |
| 3  | Diamond magnetometer enhanced by ferrite flux concentrators. Physical Review Research, 2020, 2, .                                                                                                                     | 3.6  | 78        |
| 4  | Magnetocardiography with a 16-channel fiber-coupled single-cell Rb optically pumped magnetometer.<br>Applied Physics Letters, 2019, 114, .                                                                            | 3.3  | 64        |
| 5  | SQUID-Based Microtesla MRI for In Vivo Relaxometry of the Human Brain. IEEE Transactions on Applied Superconductivity, 2009, 19, 823-826.                                                                             | 1.7  | 50        |
| 6  | Microtesla MRI with dynamic nuclear polarization. Journal of Magnetic Resonance, 2010, 207, 78-88.                                                                                                                    | 2.1  | 39        |
| 7  | Spin-exchange relaxation-free magnetometer with nearly parallel pump and probe beams. Measurement<br>Science and Technology, 2016, 27, 055002.                                                                        | 2.6  | 38        |
| 8  | Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer. Scientific Reports, 2016, 6, 24773.                                                                                                        | 3.3  | 36        |
| 9  | Anatomical MRI with an atomic magnetometer. Journal of Magnetic Resonance, 2013, 231, 39-45.                                                                                                                          | 2.1  | 34        |
| 10 | Experimental Constraint on an Exotic Spin- and Velocity-Dependent Interaction in the Sub-meV Range<br>of Axion Mass with a Spin-Exchange Relaxation-Free Magnetometer. Physical Review Letters, 2018, 121,<br>091802. | 7.8  | 29        |
| 11 | SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison. IEEE Transactions on Applied Superconductivity, 2011, 21, 465-468.                                 | 1.7  | 25        |
| 12 | Applications of Ultra-Low Field Magnetic Resonance for Imaging and Materials Studies. IEEE<br>Transactions on Applied Superconductivity, 2009, 19, 835-838.                                                           | 1.7  | 23        |
| 13 | Non-cryogenic anatomical imaging in ultra-low field regime: Hand MRI demonstration. Journal of<br>Magnetic Resonance, 2011, 211, 101-108.                                                                             | 2.1  | 22        |
| 14 | Experimental limit on an exotic parity-odd spin- and velocity-dependent interaction using an optically polarized vapor. Nature Communications, 2019, 10, 2245.                                                        | 12.8 | 20        |
| 15 | Progress on Detection of Liquid Explosives Using Ultra-Low Field MRI. IEEE Transactions on Applied Superconductivity, 2011, 21, 530-533.                                                                              | 1.7  | 16        |
| 16 | Detection of ultra-low field NMR signal with a commercial QuSpin single-beam atomic magnetometer.<br>Journal of Magnetic Resonance, 2020, 317, 106780.                                                                | 2.1  | 15        |
| 17 | Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization. Journal of Magnetic Resonance, 2016, 270, 71-76.                                                         | 2.1  | 14        |
| 18 | Multi-flux-transformer MRI detection with an atomic magnetometer. Journal of Magnetic Resonance, 2014, 249, 49-52.                                                                                                    | 2.1  | 12        |

IGOR M SAVUKOV

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating.<br>Sensors, 2016, 16, 1691.                                                                                | 3.8  | 11        |
| 20 | Magnetic microscopic imaging with an optically pumped magnetometer and flux guides. Applied Physics<br>Letters, 2017, 110, .                                                                               | 3.3  | 10        |
| 21 | Non-cryogenic ultra-low field MRI of wrist–forearm area. Journal of Magnetic Resonance, 2013, 233,<br>103-106.                                                                                             | 2.1  | 9         |
| 22 | Noise Modeling From Conductive Shields Using Kirchhoff Equations. IEEE Transactions on Applied Superconductivity, 2011, 21, 489-492.                                                                       | 1.7  | 8         |
| 23 | Gradient-echo 3D imaging of Rb polarization in fiber-coupled atomic magnetometer. Journal of<br>Magnetic Resonance, 2015, 256, 9-13.                                                                       | 2.1  | 8         |
| 24 | Parametric CI+MBPT calculations of Th I energies andg-factors for even states. Journal of Physics B:<br>Atomic, Molecular and Optical Physics, 2017, 50, 165001.                                           | 1.5  | 8         |
| 25 | Multinuclear Detection of Nuclear Spin Optical Rotation at Low Field. Journal of Physical Chemistry Letters, 2018, 9, 3323-3327.                                                                           | 4.6  | 8         |
| 26 | Wave-plate retarders based on overhead transparencies. Applied Optics, 2007, 46, 5129.                                                                                                                     | 2.1  | 5         |
| 27 | Detection of 3He spins with ultra-low field nuclear magnetic resonance employing SQUIDs for application to a neutron electric dipole moment experiment. Journal of Magnetic Resonance, 2008, 195, 129-133. | 2.1  | 5         |
| 28 | Configuration-interaction many-body perturbation theory for La ii electric-dipole transition probabilities. Physical Review A, 2019, 99, .                                                                 | 2.5  | 5         |
| 29 | Dynamic Nuclear Polarization Enhanced Nuclear Spin Optical Rotation. Angewandte Chemie -<br>International Edition, 2021, 60, 8823-8826.                                                                    | 13.8 | 5         |
| 30 | Relativistic configuration-interaction and many-body-perturbation-theory calculations of U i<br>hyperfine constants. Physical Review A, 2020, 102, .                                                       | 2.5  | 4         |
| 31 | CI-MBPT line strengths and atomic probabilities for some transitions of neutral iodine. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 145003.                                     | 1.5  | 4         |
| 32 | Investigation of magnetic noise from conductive shields in the 10–300 kHz frequency range. Journal of<br>Applied Physics, 2020, 128, 234501.                                                               | 2.5  | 4         |
| 33 | Parallel high-frequency magnetic sensing with an array of flux transformers and multi-channel optically pumped magnetometer for hand MRI application. Journal of Applied Physics, 2020, 128, .             | 2.5  | 3         |
| 34 | Accurate CI-MBPT calculation of radiative lifetimes and transition probabilities of neutral lanthanum<br>(La I) odd states with J = 3/2. Physica Scripta, 2020, 95, 105401.                                | 2.5  | 3         |
| 35 | Relativistic Configuration-Interaction and Perturbation Theory Calculations for Heavy Atoms. Atoms, 2021, 9, 104.                                                                                          | 1.6  | 3         |
|    |                                                                                                                                                                                                            |      |           |

36 Highly sensitive multi-channel atomic magnetometer. , 2018, , .

IGOR M SAVUKOV

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | CI+MBPT calculations of Ar I energies, <i>g</i> factors, and transition line strengths. Journal of<br>Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 065006.                  | 1.5 | 2         |
| 38 | Gradient Field Detection Using Interference of Stimulated Microwave Optical Sidebands. Physical<br>Review Letters, 2022, 128, 163602.                                                      | 7.8 | 2         |
| 39 | High-resolution magnetic imaging with an array of flux guides. , 2017, , .                                                                                                                 |     | 1         |
| 40 | Calculations of neon nuclear-spin optical rotation, Verdet and hyperfine constants with configuration-interaction many-body perturbation theory. European Physical Journal D, 2019, 73, 1. | 1.3 | 1         |
| 41 | Configuration–Interaction Perturbation Theory Calculations of Pu II. Atoms, 2020, 8, 39.                                                                                                   | 1.6 | 1         |
| 42 | CI-MBPT and Intensity-Based Lifetime Calculations for Th II. Atoms, 2020, 8, 87.                                                                                                           | 1.6 | 1         |
| 43 | Dynamic Nuclear Polarization Enhanced Nuclear Spin Optical Rotation. Angewandte Chemie, 2021, 133, 8905-8908.                                                                              | 2.0 | 1         |
| 44 | Broadband Ultra-Sensitive Adiabatic Magnetometer. , 2021, , .                                                                                                                              |     | 1         |
| 45 | Relativistic Configuration-Interaction and Perturbation Theory Calculations of the Sn XV Emission Spectrum. Atoms, 2021, 9, 96.                                                            | 1.6 | 1         |
| 46 | Diverse, successful, and fascinating relativistic many-body perturbation theory. Canadian Journal of Physics, 2009, 87, 35-39.                                                             | 1.1 | 0         |
| 47 | CHAPTER 7. Detection Using SQUIDs and Atomic Magnetometers. New Developments in NMR, 2015, , 183-224.                                                                                      | 0.1 | Ο         |