Vania Bonato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9186975/publications.pdf

Version: 2024-02-01

304368 288905 1,897 68 22 40 citations h-index g-index papers 71 71 71 2022 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Therapy of tuberculosis in mice by DNA vaccination. Nature, 1999, 400, 269-271.	13.7	434
2	Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Therapy, 2005, 12, 281-287.	2.3	81
3	Role of Trehalose Dimycolate in Recruitment of Cells and Modulation of Production of Cytokines and NO in Tuberculosis. Infection and Immunity, 2001, 69, 5305-5312.	1.0	75
4	Thimet Oligopeptidase (EC 3.4.24.15), a Novel Protein on the Route of MHC Class I Antigen Presentation. Biochemical and Biophysical Research Communications, 1999, 255, 591-595.	1.0	74
5	Immune regulatory effect of pHSP65 DNA therapy in pulmonary tuberculosis: activation of CD8+ cells, interferon-gamma recovery and reduction of lung injury. Immunology, 2004, 113, 130-138.	2.0	60
6	Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage. Vascular Pharmacology, 2022, 142, 106946.	1.0	59
7	Characterization of the memory/activated Tâ€∫cells that mediate the long-lived host response against tuberculosis after bacillus Calmette-Guérin or DNA vaccination. Immunology, 1999, 97, 573-581.	2.0	49
8	Tissue distribution of a plasmid DNA encoding Hsp65 gene is dependent on the dose administered through intramuscular delivery. Genetic Vaccines and Therapy, 2006, 4, 1.	1.5	46
9	Heparin prevents in vitro glycocalyx shedding induced by plasma from COVID-19 patients. Life Sciences, 2021, 276, 119376.	2.0	44
10	Pathogenic Allodiploid Hybrids of Aspergillus Fungi. Current Biology, 2020, 30, 2495-2507.e7.	1.8	39
11	Green propolis increases myeloid suppressor cells and CD4+Foxp3+ cells and reduces Th2 inflammation in the lungs after allergen exposure. Journal of Ethnopharmacology, 2020, 252, 112496.	2.0	38
12	Comparison of different delivery systems of DNA vaccination for the induction of protection against tuberculosis in mice and guinea pigs. Genetic Vaccines and Therapy, 2007, 5, 2.	1.5	37
13	M2 macrophages or IL-33 treatment attenuate ongoing Mycobacterium tuberculosis infection. Scientific Reports, 2017, 7, 41240.	1.6	37
14	Immunomodulation and Protection Induced by DNA-hsp65 Vaccination in an Animal Model of Arthritis. Human Gene Therapy, 2005, 16, 1338-1345.	1.4	36
15	Histoplasma capsulatum Inhibits Apoptosis and Mac-1 Expression in Leucocytes. Scandinavian Journal of Immunology, 2002, 56, 392-398.	1.3	31
16	Fungal Extracellular Vesicles as Potential Targets for Immune Interventions. MSphere, 2019, 4, .	1.3	31
17	Immune modulation induced by tuberculosis DNA vaccine protects non-obese diabetic mice from diabetes progression. Clinical and Experimental Immunology, 2007, 149, 570-578.	1.1	29
18	sTREM-1 Predicts Disease Severity and Mortality in COVID-19 Patients: Involvement of Peripheral Blood Leukocytes and MMP-8 Activity. Viruses, 2021, 13, 2521.	1.5	28

#	Article	IF	Citations
19	Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress. Biomolecules, 2022, 12, 604.	1.8	28
20	B-Lymphocytes in Bone Marrow or Lymph Nodes Can Take Up Plasmid DNA After Intramuscular Delivery. Human Gene Therapy, 2003, 14, 1279-1285.	1.4	25
21	Improve protective efficacy of a TB DNA-HSP65 vaccine by BCG priming. Genetic Vaccines and Therapy, 2007, 5, 7.	1.5	25
22	Comparison of different delivery systems of vaccination for the induction of protection against tuberculosis in mice. Vaccine, 2001, 19, 3518-3525.	1.7	23
23	Cytotoxic T cells and mycobacteria. FEMS Microbiology Letters, 2001, 197, 11-18.	0.7	22
24	Increased levels of interferon-? primed by culture filtrate proteins antigen and CpG-ODN immunization do not confer significant protection against Mycobacterium tuberculosis infection. Immunology, 2007, 121, 508-517.	2.0	22
25	Comprehensive gene expression profiling in lungs of mice infected with <i>Mycobacterium tuberculosis</i> following DNAhsp65 immunotherapy. Journal of Gene Medicine, 2009, 11, 66-78.	1.4	22
26	Oral administration of <i>Saccharomyces cerevisiae</i> <scp>UFMG</scp> Aâ€905 prevents allergic asthma in mice. Respirology, 2017, 22, 905-912.	1.3	22
27	Protective efficacy of different strategies employing <i>Mycobacterium leprae </i> heat-shock protein 65 against tuberculosis. Expert Opinion on Biological Therapy, 2008, 8, 1255-1264.	1.4	21
28	<i>Mycobacterium tuberculosis</i> Culture Filtrate Proteins plus CpG Oligodeoxynucleotides Confer Protection to <i>Mycobacterium bovis</i> BCG-Primed Mice by Inhibiting Interleukin-4 Secretion. Infection and Immunity, 2009, 77, 5311-5321.	1.0	21
29	Protection conferred by heterologous vaccination against tuberculosis is dependent on the ratio of <scp>CD</scp> 4 ⁺ / <scp>CD</scp> 4 ⁺ Â <scp>F</scp> oxp3 ⁺ cells. Immunology, 2012, 137, 239-248.	2.0	21
30	Recombinant <scp>DNA</scp> immunotherapy ameliorate established airway allergy in a <scp>IL</scp> â€10 dependent pathway. Clinical and Experimental Allergy, 2012, 42, 131-143.	1.4	21
31	DNA vaccine containing the mycobacterial hsp65 gene prevented insulitis in MLD-STZ diabetes. Journal of Immune Based Therapies and Vaccines, 2009, 7, 4.	2.4	19
32	<scp>CD</scp> 11c ⁺ Â <scp>CD</scp> 103 ⁺ cells of <i><scp>M</scp>ycobacterium tuberculosis</i> isêinfected C57 <scp>BL</scp> /6 but not of <scp>BALB</scp> /c mice induce a high frequency of interferonâ€ <i>i³a</i> isê•or interleukinâ€17â€producing <scp>CD</scp> 4 ⁺ cells. Immunology, 2015, 144, 574-586.	2.0	19
33	Immunosuppressive evidence of <i>Tityus serrulatus</i> toxins Ts6 and Ts15: insights of a novel K ⁺ channel pattern in T cells. Immunology, 2016, 147, 240-250.	2.0	19
34	Host genetic background affects regulatory Tâ€eell activity that influences the magnitude of cellular immune response against Mycobacterium tuberculosis. Immunology and Cell Biology, 2011, 89, 526-534.	1.0	18
35	Interplay between alveolar epithelial and dendritic cells and <i>Mycobacterium tuberculosis</i> Journal of Leukocyte Biology, 2020, 108, 1139-1156.	1.5	18
36	Recent advances in DNA vaccines for autoimmune diseases. Expert Review of Vaccines, 2009, 8, 239-252.	2.0	17

#	Article	IF	CITATIONS
37	Requirement of <scp>M</scp> y <scp>D</scp> 88 and <scp>F</scp> as pathways for the efficacy of allergenâ€free immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 275-284.	2.7	17
38	NOD2 Deficiency Promotes Intestinal CD4+ T Lymphocyte Imbalance, Metainflammation, and Aggravates Type 2 Diabetes in Murine Model. Frontiers in Immunology, 2020, 11, 1265.	2.2	17
39	A DNA vaccine against tuberculosis based on the 65 kDa heat-shock protein differentially activates human macrophages and dendritic cells. Genetic Vaccines and Therapy, 2008, 6, 3.	1.5	16
40	IFNâ€Î³â€mediated efficacy of allergenâ€free immunotherapy using mycobacterial antigens and CpGâ€ODN. Immunology and Cell Biology, 2011, 89, 777-785.	1.0	16
41	Genetic background affects the expansion of macrophage subsets in the lungs of <i>Mycobacterium tuberculosis</i> i>â€infected hosts. Immunology, 2016, 148, 102-113.	2.0	16
42	COVID-19: Integrating the Complexity of Systemic and Pulmonary Immunopathology to Identify Biomarkers for Different Outcomes. Frontiers in Immunology, 2020, 11, 599736.	2.2	16
43	Experimental tuberculosis: Designing a better model to test vaccines against tuberculosis. Tuberculosis, 2010, 90, 135-142.	0.8	15
44	Attenuation of experimental asthma by mycobacterial protein combined with CpG requires a <scp>TLR</scp> 9â€dependent <scp>IFN</scp> â€Î³â€≺scp>CCR2 signalling circuit. Clinical and Experimental Allergy, 2015, 45, 1459-1471.	1.4	15
45	Downmodulation of CD18 and CD86 on Macrophages and VLA-4 on Lymphocytes in Experimental Tuberculosis. Scandinavian Journal of Immunology, 2001, 54, 564-573.	1.3	13
46	Characterization and in vitro activities of cell-free antigens from Histoplasma capsulatum-loaded biodegradable microspheres. European Journal of Pharmaceutical Sciences, 2009, 38, 548-555.	1.9	13
47	A Single Dose of a DNA Vaccine Encoding Apa Coencapsulated with 6,6′-Trehalose Dimycolate in Microspheres Confers Long-Term Protection against Tuberculosis in Mycobacterium bovis BCG-Primed Mice. Vaccine Journal, 2013, 20, 1162-1169.	3.2	12
48	Systemic Immunological changes in patients with distinct clinical outcomes during Mycobacterium tuberculosis infection. Immunobiology, 2017, 222, 1014-1024.	0.8	11
49	CCR4-dependent reduction in the number and suppressor function of CD4+Foxp3+ cells augments IFN- \hat{l}^3 -mediated pulmonary inflammation and aggravates tuberculosis pathogenesis. Cell Death and Disease, 2019, 10, 11.	2.7	11
50	Detrimental Effect of Fungal 60-kDa Heat Shock Protein on Experimental Paracoccidioides brasiliensis Infection. PLoS ONE, 2016, 11, e0162486.	1.1	10
51	DNA encoding individual mycobacterial antigens protects mice against tuberculosis. Brazilian Journal of Medical and Biological Research, 1999, 32, 231-234.	0.7	9
52	Genetic Aspects and Microenvironment Affect Expression of CD18 and VLA-4 in Experimental Tuberculosis. Scandinavian Journal of Immunology, 2002, 56, 185-194.	1.3	9
53	No Evidence of Pathological Autoimmunity following Mycobacterium Leprae Heat-Shock Protein 65-Dna Vaccination in Mice. European Journal of Inflammation, 2009, 7, 77-85.	0.2	8
54	Mycobacterial Hsp65 antigen upregulates the cellular immune response of healthy individuals compared with tuberculosis patients. Human Vaccines and Immunotherapeutics, 2017, 13, 1040-1050.	1.4	8

#	Article	IF	Citations
55	Protective Immunity against Gamma and Zeta Variants after Inactivated SARS-CoV-2 Virus Immunization. Viruses, 2021, 13, 2440.	1.5	8
56	<i>Mycobacterium tuberculosis</i> -infected alveolar epithelial cells modulate dendritic cell function through the HIF-1α-NOS2 axis. Journal of Leukocyte Biology, 2020, 108, 1225-1238.	1.5	7
57	Obesity-Induced Dysbiosis Exacerbates IFN- \hat{l}^3 Production and Pulmonary Inflammation in the Mycobacterium tuberculosis Infection. Cells, 2021, 10, 1732.	1.8	6
58	Systemic Infection by Non-albicans Candida Species Affects the Development of a Murine Model of Multiple Sclerosis. Journal of Fungi (Basel, Switzerland), 2022, 8, 386.	1.5	6
59	Leukotrienes are not essential for the efficacy of a heterologous vaccine against Mycobacterium tuberculosis infection. Brazilian Journal of Medical and Biological Research, 2010, 43, 645-650.	0.7	5
60	Improvement of the resistance against early Mycobacterium tuberculosis-infection in the absence of PI3K \hat{I}^3 enzyme is associated with increase of CD4+IL-17+ cells and neutrophils. Tuberculosis, 2018, 113, 1-9.	0.8	5
61	Artepillin C Reduces Allergic Airway Inflammation by Induction of Monocytic Myeloid-Derived Suppressor Cells. Pharmaceutics, 2021, 13, 1763.	2.0	5
62	Functional interferences in host inflammatory immune response by airway allergic inflammation restrain experimental periodontitis development in mice. Journal of Clinical Periodontology, 2011, 38, 131-141.	2.3	4
63	Kallikrein 5 Inhibition by the Lympho-Epithelial Kazal-Type Related Inhibitor Hinders Matriptase-Dependent Carcinogenesis. Cancers, 2021, 13, 4395.	1.7	3
64	New strategy for testing efficacy of immunotherapeutic compounds for diabetes in vitro. BMC Biotechnology, 2016, 16, 40.	1.7	2
65	Interactions of Extracellular Vesicles from Pathogenic Fungi with Innate Leukocytes. Current Topics in Microbiology and Immunology, 2021, 432, 89-120.	0.7	1
66	Experimental Asthma Induced By Tropomyosins from Cockroach and Shrimp: Insights into in Vivo Cross-Reactivity. Journal of Allergy and Clinical Immunology, 2015, 135, AB62.	1.5	0
67	Bronchial hyperreactivity induced by tropomyosins from cockroach and shrimp: a mouse model to study in vivo cross-reactivity. World Allergy Organization Journal, 2015, 8, A264.	1.6	0
68	DNA Vaccine for the Prevention and Treatment of Tuberculosis. Annual Review of Biomedical Sciences, 2006, 2, .	0.5	0