
S Lehtonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9186965/publications.pdf Version: 2024-02-01

SIEHTONEN

#	Article	IF	CITATIONS
1	PACSIN proteins in vivo: Roles in development and physiology. Acta Physiologica, 2022, 234, e13783.	1.8	21
2	Ebselen enhances insulin sensitivity and decreases oxidative stress by inhibiting SHIP2 and protects from inflammation in diabetic mice. International Journal of Biological Sciences, 2022, 18, 1852-1864.	2.6	7
3	Increased Heparanase Levels in Urine during Acute Puumala Orthohantavirus Infection Are Associated with Disease Severity. Viruses, 2022, 14, 450.	1.5	4
4	Cold Saline Perfusion before Ischemia-Reperfusion Is Harmful to the Kidney and Is Associated with the Loss of Ezrin, a Cytoskeletal Protein, in Rats. Biomedicines, 2021, 9, 30.	1.4	0
5	Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia, 2021, 64, 1866-1879.	2.9	24
6	Urinary Excretion of Iohexol as a Permeability Marker in a Mouse Model of Intestinal Inflammation: Time Course, Performance and Welfare Considerations. Animals, 2021, 11, 79.	1.0	4
7	SHIPping out diabetes—Metformin, an old friend among new SHIP2 inhibitors. Acta Physiologica, 2020, 228, e13349.	1.8	12
8	Metformin Protects against Podocyte Injury in Diabetic Kidney Disease. Pharmaceuticals, 2020, 13, 452.	1.7	11
9	Novel Sulfonanilide Inhibitors of SHIP2 Enhance Glucose Uptake into Cultured Myotubes. ACS Omega, 2020, 5, 1430-1438.	1.6	1
10	Elevated TLR5 expression in vivo and loss of NF-î୩ activation via TLR5 in vitro detected in HPV-negative oropharyngeal squamous cell carcinoma. Experimental and Molecular Pathology, 2020, 114, 104435.	0.9	4
11	Tankyrase inhibition ameliorates lipid disorder via suppression of PGC-1α PARylation in db/db mice. International Journal of Obesity, 2020, 44, 1691-1702.	1.6	21
12	Septins in kidney: A territory little explored. Cytoskeleton, 2019, 76, 154-162.	1.0	4
13	Editorial: Podocyte Pathology and Nephropathy—An Update. Frontiers in Endocrinology, 2019, 10, 528.	1.5	Ο
14	Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB Journal, 2019, 33, 2858-2869.	0.2	59
15	Glucose Transporters in Diabetic Kidney Disease—Friends or Foes?. Frontiers in Endocrinology, 2018, 9, 155.	1.5	33
16	Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion. Experimental Cell Research, 2017, 350, 336-348.	1.2	32
17	Kidney morphology and candidate gene expression shows plasticity in sticklebacks adapted to divergent osmotic environments. Journal of Experimental Biology, 2017, 220, 2175-2186.	0.8	36
18	PACSIN2 accelerates nephrin trafficking and is upâ€regulated in diabetic kidney disease. FASEB Journal, 2017, 31, 3978-3990.	0.2	30

#	Article	IF	CITATIONS
19	<i>Sept7b</i> is required for the subcellular organization of cardiomyocytes and cardiac function in zebrafish. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1085-H1095.	1.5	20
20	Inhibition of SHIP2 in CD2AP-deficient podocytes ameliorates reactive oxygen species generation but aggravates apoptosis. Scientific Reports, 2017, 7, 10731.	1.6	13
21	Tollâ€like receptors 2, 4, and 9 in primary, metastasized, and recurrent oral tongue squamous cell carcinomas. Journal of Oral Pathology and Medicine, 2016, 45, 338-345.	1.4	16
22	sept7b is required for the differentiation of pancreatic endocrine progenitors. Scientific Reports, 2016, 6, 24992.	1.6	5
23	Tankyrase inhibition aggravates kidney injury in the absence of CD2AP. Cell Death and Disease, 2016, 7, e2302-e2302.	2.7	17
24	Cyclin-dependent kinase 2 protects podocytes from apoptosis. Scientific Reports, 2016, 6, 21664.	1.6	25
25	Cu-Catalyzed ligand-free synthesis of rosuvastatin based novel indole derivatives as potential anticancer agents. RSC Advances, 2016, 6, 100487-100493.	1.7	11
26	Data supporting the regulation of FOXC2 in podocyte dysfunction. Data in Brief, 2016, 6, 514-520.	0.5	2
27	Overexpression of transcription factor FOXC2 in cultured human podocytes upregulates injury markers and increases motility. Experimental Cell Research, 2016, 340, 32-42.	1.2	15
28	Nephrin Trafficking beyond the Kidney—Role in Glucose–Stimulated Insulin Secretion in β Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 965-968.	3.0	1
29	Early-Onset Diabetic E1-DN Mice Develop Albuminuria and Glomerular Injury Typical of Diabetic Nephropathy. BioMed Research International, 2015, 2015, 1-11.	0.9	10
30	Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway. Cell Death and Disease, 2015, 6, e1752-e1752.	2.7	41
31	Expression of toll-like receptors in HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma—an in vivo and in vitro study. Tumor Biology, 2015, 36, 7755-7764.	0.8	22
32	Tankyrases regulate glucoregulatory mechanisms and somatic growth <i>via</i> the central melanocortin system in zebrafish larvae. FASEB Journal, 2015, 29, 4435-4448.	0.2	4
33	Lack of CD2AP disrupts Glut4 trafficking and attenuates glucose uptake in podocytes. Journal of Cell Science, 2015, 128, 4588-600.	1.2	16
34	Predictive role of toll-like receptors 2, 4, and 9 in oral tongue squamous cell carcinoma. Oral Oncology, 2015, 51, 96-102.	0.8	36
35	Functions of the podocyte proteins nephrin and Neph3 and the transcriptional regulation of their genes. Clinical Science, 2014, 126, 315-328.	1.8	32
36	Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis. Journal of Cell Science, 2014, 127, 1476-86.	1.2	24

#	Article	IF	CITATIONS
37	Ezrin Is Down-Regulated in Diabetic Kidney Glomeruli and Regulates Actin Reorganization and Glucose Uptake via GLUT1 in Cultured Podocytes. American Journal of Pathology, 2014, 184, 1727-1739.	1.9	30
38	CD2AP is associated with end-stage renal disease in patients with type 1 diabetes. Acta Diabetologica, 2013, 50, 887-897.	1.2	8
39	Regulation of nephrin gene by the Ets transcription factor, GA-binding protein. Nephrology Dialysis Transplantation, 2013, 28, 846-855.	0.4	10
40	Transcription of nephrin-Neph3 gene pair is synergistically activated by WT1 and NF-ÂB and silenced by DNA methylation. Nephrology Dialysis Transplantation, 2012, 27, 1737-1745.	0.4	25
41	Septin 7 forms a complex with CD2AP and nephrin and regulates glucose transporter trafficking. Molecular Biology of the Cell, 2012, 23, 3370-3379.	0.9	53
42	Neph3 associates with regulation of glomerular and neural development in zebrafish. Differentiation, 2012, 83, 38-46.	1.0	10
43	<i>INPPL1</i> is associated with the metabolic syndrome in men with Type 1 diabetes, but not with diabetic nephropathy. Diabetic Medicine, 2012, 29, 1589-1595.	1.2	7
44	<i>Trans</i> -interaction of nephrin and Neph1/Neph3 induces cell adhesion that associates with decreased tyrosine phosphorylation of nephrin. Biochemical Journal, 2011, 435, 619-628.	1.7	25
45	Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia. Journal of Cell Science, 2011, 124, 1245-1255.	1.2	74
46	Â-Catenin mediates adriamycin-induced albuminuria and podocyte injury in adult mouse kidneys. Nephrology Dialysis Transplantation, 2010, 25, 2437-2446.	0.4	59
47	Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Molecular and Cellular Endocrinology, 2010, 328, 70-79.	1.6	47
48	Regulation of Neph3 gene in podocytes – key roles of transcription factors NF-κB and Sp1. BMC Molecular Biology, 2009, 10, 83.	3.0	14
49	CD2-associated protein is widely expressed and differentially regulated during embryonic development. Differentiation, 2008, 76, 506-517.	1.0	19
50	The Endocytic Adaptor Protein ARH Associates with Motor and Centrosomal Proteins and Is Involved in Centrosome Assembly and Cytokinesis. Molecular Biology of the Cell, 2008, 19, 2949-2961.	0.9	50
51	The R-Ras interaction partner ORP3 regulates cell adhesion. Journal of Cell Science, 2008, 121, 695-705.	1.2	88
52	Connecting the interpodocyte slit diaphragm and actin dynamics: Emerging role for the nephrin signaling complex. Kidney International, 2008, 73, 903-905.	2.6	17
53	Densin and beta-catenin form a complex and co-localize in cultured podocyte cell junctions. Molecular and Cellular Biochemistry, 2007, 305, 9-18.	1.4	15
54	CD2-associated protein in human urogenital system and in adult kidney tumours. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 446, 394-401.	1.4	3

#	Article	IF	CITATIONS
55	Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and Â-actinin are components of the nephrin multiprotein complex. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9814-9819.	3.3	148
56	CD2AP contributes to cell migration and adhesion in cultured gastric epithelium. Biochemical and Biophysical Research Communications, 2005, 332, 426-432.	1.0	11
57	Subfamily III of mammalian oxysterol-binding protein (OSBP) homologues: the expression and intracellular localization of ORP3, ORP6, and ORP7. Cell and Tissue Research, 2004, 315, 39-57.	1.5	56
58	Nephrin Forms a Complex with Adherens Junction Proteins and CASK in Podocytes and in Madin-Darby Canine Kidney Cells Expressing Nephrin. American Journal of Pathology, 2004, 165, 923-936.	1.9	78
59	Interaction of Endogenous Nephrin and CD2-Associated Protein in Mouse Epithelial M-1 Cell Line. Journal of the American Society of Nephrology: JASN, 2002, 13, 1766-1772.	3.0	44
60	Nephrin TRAP Mice Lack Slit Diaphragms and Show Fibrotic Glomeruli and Cystic Tubular Lesions. Journal of the American Society of Nephrology: JASN, 2002, 13, 1586-1594.	3.0	106
61	CD2-associated protein directly interacts with the actin cytoskeleton. American Journal of Physiology - Renal Physiology, 2002, 283, F734-F743.	1.3	137
62	HMG-17 is an early marker of inductive interactions in the developing mouse kidney. Differentiation, 2001, 67, 154-163.	1.0	21
63	In Vivo Interaction of the Adapter Protein CD2-associated Protein with the Type 2 Polycystic Kidney Disease Protein, Polycystin-2. Journal of Biological Chemistry, 2000, 275, 32888-32893.	1.6	86
64	P-144. The effect of intrauterine levonorgestrel use on the ultrastructure and oestrogen and progestogen receptors of human endometrium. Human Reproduction, 1999, 14, 213-213.	0.4	1
65	Syntaxin 3 and Munc-18-2 in epithelial cells during kidney development. Kidney International, 1999, 56, 815-826.	2.6	19
66	Mouse metanephric kidney as a model system for identifying developmentally regulated genes. Journal of Cellular Physiology, 1997, 173, 147-151.	2.0	7
67	A Sec1-Related Vesicle-Transport Protein that is Expressed Predominantly in Epithelial Cells. FEBS Journal, 1996, 239, 638-646.	0.2	55
68	Changes in the expression of intermediate filaments and desmoplakins during development of human notochord. Differentiation, 1995, 59, 43-49.	1.0	21
69	Differential expression of gap junction mRNAs and proteins in the developing murine kidney and in experimentally induced nephric mesenchymes. Development (Cambridge), 1992, 115, 827-837.	1.2	33
70	Early development in the mouse: Would it be affected by microgravity?. Advances in Space Research, 1989, 9, 201-208.	1.2	0
71	Cell proliferation and expression of cytokeratin filaments in F9 embryonal carcinoma cells. Development (Cambridge), 1989, 106, 635-640.	1.2	12
72	Lectin binding of F9 embryonal carcinoma cells: evidence for population heterogeneity and developmentally regulated high-Mr cell surface proteins. Journal of Cell Science, 1989, 92, 561-568.	1.2	3

#	Article	IF	CITATIONS
73	Teratocarcinoma stem cells as a model for differentiation in the mouse embryo. International Journal of Developmental Biology, 1989, 33, 105-15.	0.3	36
74	Cytoskeleton in preimplantation mouse development. Cell Differentiation, 1988, 24, 165-177.	1.3	43
75	Chapter 7 Cytokeratins in Oocytes and Preimplantation Embryos of the Mouse. Current Topics in Developmental Biology, 1987, 22, 153-173.	1.0	15
76	Rate of gonadotrophin-induced abnormalities in mouse ova is related to the site of hormone administration. Reproduction, 1987, 80, 613-617.	1.1	6
77	Evidence for the Presence of Cytokeratin-like Protein in Preimplantation Mouse Embryos. Annals of the New York Academy of Sciences, 1985, 455, 744-747.	1.8	8
78	RHABDOMYOMA. Acta Pathologica, Microbiologica, Et Immunologica Scandinavica Section A, Pathology, 1982, 90A, 125-129.	0.3	7