David Boyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/918685/publications.pdf

Version: 2024-02-01

40 papers

1,191 citations

331538 21 h-index 3777752 34 g-index

41 all docs

41 docs citations

41 times ranked

1704 citing authors

#	Article	IF	CITATIONS
1	Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environment International, 2022, 159, 106994.	4.8	46
2	The bioaccumulation testing strategy for nanomaterials: correlations with particle properties and a meta-analysis of <i>in vitro</i> fish alternatives to <i>in vivo</i> fish tests. Environmental Science: Nano, 2022, 9, 684-701.	2.2	7
3	Polymer-coated TiO ₂ nanoparticles bioaccumulate, immunoactivate and suppress pathogenic <i>Mycobacterium chelonae</i> clearance when intravenously injected into goldfish (<i>Carassius auratus L.</i>). Environmental Science: Nano, 2021, 8, 1910-1926.	2.2	1
4	Dietary exposure to copper sulphate compared to a copper oxide nanomaterial in rainbow trout: bioaccumulation with minimal physiological effects. Environmental Science: Nano, 2021, 8, 2297-2309.	2.2	3
5	Quantification of particulate Ag in rainbow trout organs following dietary exposure to silver nitrate, or two forms of engineered silver nanoparticles. Environmental Science: Nano, 2021, 8, 1642-1653.	2.2	3
6	The bioaccumulation testing strategy for manufactured nanomaterials: physico-chemical triggers and read across from earthworms in a meta-analysis. Environmental Science: Nano, 2021, 8, 3167-3185.	2.2	4
7	Toxicities of copper oxide nanomaterial and copper sulphate in early life stage zebrafish: Effects of pH and intermittent pulse exposure. Ecotoxicology and Environmental Safety, 2020, 190, 109985.	2.9	33
8	Comparison of the dietary bioavailability of copper sulphate and copper oxide nanomaterials in <i>ex vivo</i> gut sacs of rainbow trout: effects of low pH and amino acids in the lumen. Environmental Science: Nano, 2020, 7, 1967-1979.	2.2	4
9	Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish. Science of the Total Environment, 2020, 715, 136941.	3.9	21
10	Polyvinyl chloride (PVC) plastic fragments release Pb additives that are bioavailable in zebrafish. Environmental Pollution, 2020, 263, 114422.	3.7	89
11	An assessment of the dietary bioavailability of silver nanomaterials in rainbow trout using an <i>ex vivo</i> gut sac technique. Environmental Science: Nano, 2019, 6, 646-660.	2.2	16
12	Dietary exposure to silver nitrate compared to two forms of silver nanoparticles in rainbow trout: bioaccumulation potential with minimal physiological effects. Environmental Science: Nano, 2019, 6, 1393-1405.	2.2	29
13	Development of a suitable detection method for silver nanoparticles in fish tissue using single particle ICP-MS. Environmental Science: Nano, 2019, 6, 3388-3400.	2.2	21
14	Carbon nanotubes diminish IgE-mediated degranulation in the rat basophilic leukemia (RBL)-2H3 cell line. NanoImpact, 2018, 9, 31-41.	2.4	1
15	Intravenous injection of unfunctionalized carbon-based nanomaterials confirms the minimal toxicity observed in aqueous and dietary exposures in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Pollution, 2018, 232, 191-199.	3.7	5
16	Effects of silver nanoparticles in early life-stage zebrafish are associated with particle dissolution and the toxicity of soluble silver. NanoImpact, 2018, 12, 1-8.	2.4	22
17	Do polyethylene microplastic beads alter the intestinal uptake of Ag in rainbow trout (Oncorhynchus) Tj ETQq1 1 200-206.	1 0.78431 3.7	4 rgBT /Overice 60
18	Humic acid ameliorates nanoparticle-induced developmental toxicity in zebrafish. Environmental Science: Nano, 2017, 4, 127-137.	2,2	29

#	Article	IF	CITATIONS
19	The effects of rosette nanotubes with different functionalizations on channel catfish (Ictalurus) Tj ETQq1 1 0.784	3 <u>14</u> rgBT ,	Overlock 10
20	Characterization of developmental Na+ uptake in rainbow trout larvae supports a significant role for Nhe3b. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 201, 30-36.	0.8	11
21	Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: physiology and metal accumulation. Aquatic Toxicology, 2016, 174, 188-198.	1.9	39
22	Aqueous Hg2+ associates with TiO2 nanoparticles according to particle size, changes particle agglomeration, and becomes less bioavailable to zebrafish. Aquatic Toxicology, 2016, 174, 242-246.	1.9	23
23	Polymerâ€Coated Metalâ€Oxide Nanoparticles Inhibit IgE Receptor Binding, Cellular Signaling, and Degranulation in a Mast Cellâ€like Cell Line. Advanced Science, 2015, 2, 1500104.	5.6	8
24	Use of an exposure chamber to maintain aqueous phase nanoparticle dispersions for improved toxicity testing in fish. Environmental Toxicology and Chemistry, 2015, 34, 583-588.	2.2	20
25	Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis) Tj ETQq1 1 0.78431 32-40.	4 rgBT /Ον 3.7	verlock 10 T 45
26	The role of acid-sensing ion channels (ASICs) in epithelial Na+ uptake in adult zebrafish (<i>Danio) Tj ETQq0 0 0 rg</i>	şBT (Overl	ock 10 Tf 50
27	Rosette Nanotubes Alter IgE-Mediated Degranulation in the Rat Basophilic Leukemia (RBL)-2H3 Cell Line. Toxicological Sciences, 2015, 148, 108-120.	1.4	8
28	Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio). Aquatic Toxicology, 2015, 158, 211-217.	1.9	27
29	Mechanisms of Clâ^' uptake in rainbow trout: Cloning and expression of slc26a6, a prospective Clâ^'/HCO3â^' exchanger. Comparative Biochemistry and Physiology Part A, Molecular & Entegrative Physiology, 2015, 180, 43-50.	0.8	34
30	Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environmental Chemistry, 2014, 11, 207.	0.7	69
31	Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquatic Toxicology, 2014, 152, 318-323.	1.9	52
32	Minimal effects of waterborne exposure to single-walled carbon nanotubes on behaviour and physiology of juvenile rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 2014, 146, 154-164.	1.9	17
33	Impaired behavioural response to alarm substance in rainbow trout exposed to copper nanoparticles. Aquatic Toxicology, 2014, 152, 195-204.	1.9	51
34	Critical comparison of intravenous injection of TiO2 nanoparticles with waterborne and dietary exposures concludes minimal environmentally-relevant toxicity in juvenile rainbow trout Oncorhynchus mykiss. Environmental Pollution, 2013, 182, 70-79.	3.7	40
35	Subtle alterations in swimming speed distributions of rainbow trout exposed to titanium dioxide nanoparticles are associated with gill rather than brain injury. Aquatic Toxicology, 2013, 126, 116-127.	1.9	84
36	Physiological response to a metal-contaminated invertebrate diet in zebrafish: Importance of metal speciation and regulation of metal transport pathways. Aquatic Toxicology, 2011, 105, 21-28.	1.9	16

#	Article	IF	CITATION
37	Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach. Journal of Fish Biology, 2011, 79, 821-853.	0.7	92
38	Bioavailability of a natural lead ontaminated invertebrate diet to zebrafish. Environmental Toxicology and Chemistry, 2010, 29, 708-714.	2.2	17
39	Tolerance of Atlantic salmon (Salmo salar) to dietborne endosulfan assessed by haematology, biochemistry, histology and growth. Aquaculture Nutrition, 2010, 16, 549-558.	1.1	1
40	Natural Arsenic Contaminated Diets Perturb Reproduction in Fish. Environmental Science & Eamp; Technology, 2008, 42, 5354-5360.	4.6	82