
P P Sahay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9186739/publications.pdf Version: 2024-02-01

ΡΡΩμαν

#	Article	IF	CITATIONS
1	Modification in the physical properties of nanocrystalline ZnO thin films by Sn/Ni co-doping for transparent conductive oxide applications. Physica B: Condensed Matter, 2022, 629, 413638.	2.7	16
2	Precursor-Dependent Spray-Pyrolyzed Co3O4 Thin Films: Comparative Results on Their Structural, Optical, and Electrical Properties. Brazilian Journal of Physics, 2022, 52, 1.	1.4	3
3	Lithium doping in spray-pyrolyzed NiO thin films: results on their microstructural, optical and electrochromic properties. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	11
4	Galvanostatically deposited Co3O4–NiO nanocomposite thin films onto FTO glass substrates: An investigation of their microstructural and supercapacitive properties. Journal of Alloys and Compounds, 2021, 867, 159022.	5.5	3
5	The effects of Sn–In co-doping on the structural, optical, photoluminescence and electrical characteristics of the sol-gel processed ZnO thin films. Optical Materials, 2020, 110, 110395.	3.6	23
6	Influence of Ti doping on the microstructural and electrochromic properties of dip-coated nanocrystalline V2O5 thin films. Journal of Sol-Gel Science and Technology, 2020, 95, 34-51.	2.4	16
7	Sn–Ga co-doping in sol-gel derived ZnO thin films: Studies of their microstructural, optical, luminescence and electrical properties. Materials Science in Semiconductor Processing, 2020, 118, 105178.	4.0	32
8	Synthesis, characterizations, and magnetic properties of FeCoNiTi-based high-entropy alloys. Emergent Materials, 2020, 3, 655-662.	5.7	16
9	Results on the microstructural, optical and electrochromic properties of spray-deposited MoO3 thin films by the influence of W doping. Materials Science in Semiconductor Processing, 2019, 104, 104668.	4.0	23
10	Microstructural, optical and electrochromical properties of W-doped Nb2O5 thin films prepared by dip-coating process using sols obtained by the chloroalkoxide route. Journal of Materials Science: Materials in Electronics, 2019, 30, 17999-18014.	2.2	5
11	Modification in the microstructural and electrochromic properties of spray-pyrolysed WO3 thin films upon Mo doping. Journal of Sol-Gel Science and Technology, 2019, 90, 281-295.	2.4	21
12	Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. Journal of Materials Science, 2019, 54, 4433-4443.	3.7	48
13	Influence of electrodeposition modes on the electrochemical performance of MnO2 films prepared using anionic MnO4â~ (Mn7+) precursor. Ceramics International, 2018, 44, 5710-5718.	4.8	16
14	Supercapacitive performance of electrochemically synthesized nanocrystalline MnO2 films using different plating solutions: A comparative study. Journal of Alloys and Compounds, 2018, 749, 172-179.	5.5	10
15	Electrochemical supercapacitive performance of potentiostatically cathodic electrodeposited nanostructured MnO2 films. Journal of Solid State Electrochemistry, 2017, 21, 2393-2405.	2.5	13
16	Nanocube In ₂ O ₃ @RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Advances, 2017, 7, 38714-38724.	3.6	90
17	Multifunctional metal oxide nanomaterials for chemical gas sensing. Procedia Engineering, 2017, 215, 145-151.	1.2	4
18	Cr-doped WO3 nanosheets: Structural, optical and formaldehyde sensing properties. Ceramics International, 2016, 42, 15301-15310.	4.8	53

P P SAHAY

#	Article	IF	CITATIONS
19	Improved electrochromic performance in sprayed WO 3 thin films upon Sb doping. Journal of Alloys and Compounds, 2016, 660, 336-341.	5.5	44
20	SnO ₂ quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H ₂ and LPG sensor. Nanoscale, 2015, 7, 11971-11979.	5.6	92
21	Structural, morphological, optical and electrical properties of spray-deposited Sb-doped WO3 nanocrystalline thin films prepared using ammonium tungstate precursor. Journal of Materials Science: Materials in Electronics, 2015, 26, 2697-2708.	2.2	16
22	Effect of precursors on the microstructural, optical, electrical and electrochromic properties of WO3 nanocrystalline thin films. Journal of Materials Science: Materials in Electronics, 2015, 26, 6293-6305.	2.2	21
23	Structure, Optical and Formaldehyde Sensing Properties of Co-Precipitated Fe-Doped WO ₃ Nanomaterials. Nano, 2015, 10, 1550113.	1.0	11
24	Enhanced acetone response in co-precipitated WO3 nanostructures upon indium doping. Sensors and Actuators B: Chemical, 2015, 209, 368-376.	7.8	65
25	Cr-induced modifications in the structural, photoluminescence and acetone-sensing behaviour of hydrothermally synthesised SnO2nanoparticles. Journal of Experimental Nanoscience, 2015, 10, 1042-1056.	2.4	11
26	Tin-Incorporation Induced Changes in the Microstructural, Optical, and Electrical Behavior of Tungsten Oxide Nanocrystalline Thin Films Grown Via Spray Pyrolysis. Journal of Thermal Spray Technology, 2014, 23, 1445-1455.	3.1	19
27	Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sensors and Actuators B: Chemical, 2014, 193, 19-27.	7.8	67
28	Spray-deposited nanocrystalline WO3 thin films prepared using tungsten hexachloride dissolved in N-N dimethylformamide and influence of in doping on their structural, optical and electrical properties. Electronic Materials Letters, 2014, 10, 401-410.	2.2	38
29	Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO ₂ nanoparticles. RSC Advances, 2014, 4, 3904-3912.	3.6	92
30	Tailoring the Microstructural, Optical, and Electrical Properties of Nanocrystalline WO3 Thin Films Using Al Doping. Journal of Materials Engineering and Performance, 2014, 23, 3141-3151.	2.5	12
31	Influence of In doping on the structural, photo-luminescence and alcohol response characteristics of the SnO2 nanoparticles. Materials Research Bulletin, 2013, 48, 4196-4205.	5.2	18
32	Sn-Doped In2O3 Nanocrystalline Thin Films Deposited by Spray Pyrolysis: Microstructural, Optical, Electrical, and Formaldehyde-Sensing Characteristics. Journal of Thermal Spray Technology, 2013, 22, 1035-1043.	3.1	27
33	Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films. Applied Physics A: Materials Science and Processing, 2013, 113, 651-662.	2.3	31
34	Influence of Fe doping on the structural, optical and acetone sensing properties of sprayed ZnO thin films. Materials Research Bulletin, 2013, 48, 2687-2695.	5.2	39
35	Experimental Investigation of Spray-Deposited Fe-Doped ZnO Nanoparticle Thin Films: Structural, Microstructural, and Optical Properties. Journal of Thermal Spray Technology, 2013, 22, 1230-1241.	3.1	28
36	Influence of In doping on the structural, optical and acetone sensing properties of ZnO nanoparticulate thin films. Materials Science in Semiconductor Processing, 2013, 16, 200-210.	4.0	55

P P SAHAY

#	Article	lF	CITATIONS
37	Effect of Al dopants on the structural, optical and gas sensing properties of spray-deposited ZnO thin films. Materials Chemistry and Physics, 2013, 142, 276-285.	4.0	40
38	Structural, dielectric and photoluminescence properties of co-precipitated Zn-doped SnO2 nanoparticles. Current Applied Physics, 2013, 13, 479-486.	2.4	79
39	Volatile Organic Compounds (VOCs) Response Characteristics of the Hydrothermally Synthesized SnO ₂ Nanocapsules. Sensor Letters, 2013, 11, 1611-1616.	0.4	7
40	Effect of precursors on structure, optical and electrical properties of chemically deposited nanocrystalline ZnO thin films. Applied Surface Science, 2012, 258, 2823-2828.	6.1	31
41	Zn-doped and undoped SnO2 nanoparticles: A comparative structural, optical and LPG sensing properties study. Materials Research Bulletin, 2012, 47, 4112-4118.	5.2	48
42	AC transport properties of nanocrystalline SnO2 semiconductor. Ceramics International, 2012, 38, 1281-1286.	4.8	18
43	Synthesis, characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles. Ceramics International, 2012, 38, 2295-2304.	4.8	47
44	Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films. Ceramics International, 2012, 38, 4151-4158.	4.8	60
45	Alcohol-sensing characteristics of spray deposited ZnO nano-particle thin films. Sensors and Actuators B: Chemical, 2011, 160, 1043-1049.	7.8	91
46	Growth, structure and optical characterization of Alâ€doped ZnO nanoparticle thin films. Crystal Research and Technology, 2011, 46, 1086-1092.	1.3	28
47	Sensing of LPG with nanostructured zinc oxide thin films grown by spray pyrolysis technique. Physica B: Condensed Matter, 2011, 406, 2684-2688.	2.7	35
48	Structural, dielectric, and electrical studies on thermally evaporated CdTe thin films. Journal of Materials Science, 2009, 44, 534-540.	3.7	9
49	Studies on ac response of zinc oxide pellets. Journal of Materials Science, 2008, 43, 4534-4540.	3.7	50
50	Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors. Sensors and Actuators B: Chemical, 2008, 133, 222-227.	7.8	154
51	Al-doped ZnO thin films as methanol sensors. Sensors and Actuators B: Chemical, 2008, 134, 654-659.	7.8	357
52	Optical properties of thermally evaporated CdS thin films. Crystal Research and Technology, 2007, 42, 275-280.	1.3	163
53	Optical and electrical studies on spray deposited ZnO thin films. Crystal Research and Technology, 2007, 42, 723-729.	1.3	59
54	Sprayed ZnO thin films for ethanol sensors. Journal of Materials Science, 2005, 40, 4791-4793.	3.7	88

Ρ Ρ Σαμαγ

#	Article	IF	CITATIONS
55	Zinc oxide thin film gas sensor for detection of acetone. Journal of Materials Science, 2005, 40, 4383-4385.	3.7	221
56	On the electrical conductivity of thermally evaporated CdS thin films. Journal of Materials Science Letters, 2002, 21, 923-925.	0.5	6
57	Electrical properties of vacuum-evaporated CdTe thin films. Journal of Materials Science Letters, 2001, 20, 1933-1935.	0.5	1
58	Transport properties of semiconducting GaxIn1-xSb solid solutions. , 1992, 1523, 73.		0
59	Hydrogenation effects on Ni/n-Si(111) Schottky diode characteristics. Proceedings of SPIE, 1992, , .	0.8	0
60	Electrical characterization of semiconducting polycrystalline GaxIn(1?x)Sb alloys. Journal of Materials Science, 1992, 27, 4075-4079.	3.7	1
61	Electrical characterization of interface states in Ni/n-Si(111) Schottky diodes from (C-V) characteristics. Microelectronics Journal, 1992, 23, 625-632.	2.0	7
62	Effects of hydrogenation on the electrical characteristics of Ni/n-Si(111) Schottky diodes. Solid-State Electronics, 1991, 34, 727-729.	1.4	4
63	Role of hydrogen in interface states parameters of Ni/n-Si (111) Schottky diodes: (c-v) studies. Journal of Materials Science Letters, 1991, 10, 556-558.	0.5	1
64	Characterization of interface states at Ni/n-Si Schottky barriers fromI –V characteristics. Crystal Research and Technology, 1990, 25, 1461-1467.	1.3	2