
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9186473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-insoluble silk films with silk I structure. Acta Biomaterialia, 2010, 6, 1380-1387.	4.1	530
2	Insoluble and Flexible Silk Films Containing Glycerol. Biomacromolecules, 2010, 11, 143-150.	2.6	187
3	Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomaterialia, 2013, 9, 6771-6782.	4.1	176
4	Stabilization of Enzymes in Silk Films. Biomacromolecules, 2009, 10, 1032-1042.	2.6	174
5	Study on porous silk fibroin materials. I. Fine structure of freeze dried silk fibroin. Journal of Applied Polymer Science, 2001, 79, 2185-2191.	1.3	135
6	Silk fibroin electrogelation mechanisms. Acta Biomaterialia, 2011, 7, 2394-2400.	4.1	128
7	Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomaterialia, 2012, 8, 2185-2192.	4.1	127
8	Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomaterialia, 2012, 8, 2628-2638.	4.1	118
9	Study on porous silk fibroin materials. II. Preparation and characteristics of spongy porous silk fibroin materials. Journal of Applied Polymer Science, 2001, 79, 2192-2199.	1.3	108
10	Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Biomaterials, 2011, 32, 1059-1067.	5.7	108
11	Structure and properties of silk fibroin–poly(vinyl alcohol) gel. International Journal of Biological Macromolecules, 2002, 30, 89-94.	3.6	105
12	Swellable silk fibroin microneedles for transdermal drug delivery. International Journal of Biological Macromolecules, 2018, 106, 48-56.	3.6	100
13	A single thiourea-appended 1,8-naphthalimide chemosensor for three heavy metal ions: Fe3+, Pb2+, and Hg2+. Sensors and Actuators B: Chemical, 2015, 208, 258-266.	4.0	98
14	Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking. International Journal of Biological Macromolecules, 2003, 32, 159-163.	3.6	74
15	Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring. RSC Advances, 2020, 10, 6163-6171.	1.7	66
16	Insulin-Loaded Silk Fibroin Microneedles as Sustained Release System. ACS Biomaterials Science and Engineering, 2019, 5, 1887-1894.	2.6	65
17	Combined Silk Fibroin Microneedles for Insulin Delivery. ACS Biomaterials Science and Engineering, 2020, 6, 3422-3429.	2.6	60
18	Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films. Biomedical Materials (Bristol), 2006, 1, 181-187.	1.7	48

#	Article	IF	CITATIONS
19	The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect. Journal of Bone and Joint Surgery: British Volume, 2010, 92-B, 320-325.	3.4	48
20	A silk fibroin hydrogel with reversible sol–gel transition. RSC Advances, 2017, 7, 24085-24096.	1.7	46
21	The influence of the hydrophilic–lipophilic environment on the structure of silk fibroin protein. Journal of Materials Chemistry B, 2015, 3, 2599-2606.	2.9	41
22	Porous 3â€Ð scaffolds from regenerated <i>Antheraea pernyi</i> silk fibroin. Polymers for Advanced Technologies, 2008, 19, 207-212.	1.6	40
23	Chemical, Thermal, Time, and Enzymatic Stability of Silk Materials with Silk I Structure. International Journal of Molecular Sciences, 2021, 22, 4136.	1.8	34
24	Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasar Antheraea pernyi. International Journal of Biological Macromolecules, 2015, 79, 316-325.	3.6	33
25	The effect of iron incorporation on the in vitro bioactivity and drug release of mesoporous bioactive glasses. Ceramics International, 2013, 39, 6591-6598.	2.3	32
26	Response of filopodia and lamellipodia to surface topography on micropatterned silk fibroin films. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	31
27	Chinese Oak Tasar Silkworm <i>Antheraea pernyi</i> Silk Proteins: Current Strategies and Future Perspectives for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1800252.	2.1	31
28	Fabrication of Silk Fibroin/Graphene Film with High Electrical Conductivity and Humidity Sensitivity. Polymers, 2019, 11, 1774.	2.0	30
29	Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels. Polymers, 2018, 10, 153.	2.0	27
30	Highly elastomeric photocurable silk hydrogels. International Journal of Biological Macromolecules, 2019, 134, 838-845.	3.6	27
31	Study on porous silk fibroin materials: 3. Influence of repeated freeze-thawing on the structure and properties of porous silk fibroin materials. Polymers for Advanced Technologies, 2002, 13, 605-610.	1.6	24
32	Self-Assembling Silk-Based Nanofibers with Hierarchical Structures. ACS Biomaterials Science and Engineering, 2017, 3, 2617-2627.	2.6	24
33	One-pot synthesis of a new rhodamine-based dually-responsive pH sensor and its application to bioimaging. Tetrahedron, 2014, 70, 6974-6979.	1.0	22
34	Stabilization of horseradish peroxidase in silk materials. Frontiers of Materials Science in China, 2009, 3, 367-373.	0.5	21
35	Three-dimensional tissue culture model of human breast cancer for the evaluation of multidrug resistance. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1959-1971.	1.3	19
36	Silk Fibroin Microneedle Patches for the Treatment of Insomnia. Pharmaceutics, 2021, 13, 2198.	2.0	18

#	Article	IF	CITATIONS
37	Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release. International Journal of Molecular Sciences, 2016, 17, 2012.	1.8	17
38	Synthesis of pH and Glucose Responsive Silk Fibroin Hydrogels. International Journal of Molecular Sciences, 2021, 22, 7107.	1.8	17
39	Potential of biocompatible regenerated silk fibroin/sodium N-lauroyl sarcosinate hydrogels. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 780-795.	1.9	14
40	Orientational behaviors of silk fibroin hydrogels. Journal of Applied Polymer Science, 2017, 134, 45050.	1.3	14
41	Green Pathway for Processing Non-mulberry Antheraea pernyi Silk Fibroin/Chitin-Based Sponges: Biophysical and Biochemical Characterization. Frontiers in Materials, 2020, 7, .	1.2	14
42	Highly Absorbent Silk Fibroin Protein Xerogel. ACS Biomaterials Science and Engineering, 2021, 7, 3594-3607.	2.6	14
43	Photocurable silk fibroin- polyvinylpyrrolidone hydrogel. Materialia, 2020, 9, 100525.	1.3	13
44	<i>Antheraea pernyi</i> Silk Fibroin Nanoparticles for Drug Delivery. Journal of Nano Research, 0, 27, 75-81.	0.8	12
45	<i>Antheraea pernyi</i> silk fibroin maintains the immunosupressive properties of human bone marrow mesenchymal stem cells. Cell Biology International, 2009, 33, 1127-1134.	1.4	11
46	Silk fibroin composite membranes for application in corneal regeneration. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
47	Detection of Fe ³⁺ using a novel hyperbranched polymeric spectral sensor. Analytical Methods, 2019, 11, 4456-4463.	1.3	10
48	Preparation, Structure, and Properties of Silk Fabric Grafted with 2-Hydroxypropyl Methacrylate Using the HRP Biocatalyzed ATRP Method. Polymers, 2018, 10, 557.	2.0	8
49	Antimicrobial Silk Fibroin Hydrogel Instantaneously Induced by Cationic Surfactant. Biotechnology, 2013, 12, 128-134.	O.5	8
50	Impact of Sterilization Methods on the Stability of Silk Fibroin Solution. Advanced Materials Research, 0, 311-313, 1755-1759.	0.3	7
51	Tunable High-Molecular-Weight Silk Fibroin Polypeptide Materials: Fabrication and Self-Assembly Mechanism. ACS Applied Bio Materials, 2020, 3, 3248-3259.	2.3	7
52	Excellent Cell Compatibility in Time Controlled Silk Fibroin Hydrogels. Materials Science Forum, 0, 815, 407-411.	0.3	5
53	Study on Antheraea perny Silk Fibroin Nanoparticles Carried Insulin. Nano Research & Applications, 2017, 03, .	0.2	5
54	The Micropillar Structure on Silk Fibroin Film Influence Intercellular Connection Mediated by Nanotubular Structures. Materials, 2014, 7, 4628-4639.	1.3	4

#	Article	IF	CITATIONS
55	Cationic Surfactant-Induced Instantaneous Gelation of Silk Fibroin Solution. Asian Journal of Chemistry, 2014, 26, 5667-5672.	0.1	3
56	<i>Antheraea pernyi</i> Silk Fibroin Microspheres Carried Lysozyme. Advanced Materials Research, 0, 915-916, 875-878.	0.3	3
57	Effect of degumming ph value on electrospining of silk fibroin. Thermal Science, 2014, 18, 1703-1704.	0.5	3
58	Prospects of Silk Sericin Membranes Fabricated with Tyrosinase. Journal of Fiber Bioengineering and Informatics, 2015, 8, 57-67.	0.2	3
59	Fabrication of flexible conductive silk fibroin/polythiophene membrane and its properties. E-Polymers, 2021, 22, 48-57.	1.3	3
60	Silk Fibroin Sol-Gel Transitions in Different Solutions. Advanced Materials Research, 0, 175-176, 153-157.	0.3	2
61	Study on Antheraea Pernyi Silk Fibroin Microspheres Carried Drug. Advanced Materials Research, 2013, 796, 117-120.	0.3	2
62	Preparation and Characteristics of Gradient Silk Fibroin/Hydroxyapatite Porous Composites. Materials Science Forum, 0, 610-613, 1231-1236.	0.3	1
63	Preparation and Characterization of Silk Fibroin/Hydroxyapatite Bilayer Scaffolds. Advanced Materials Research, 2011, 415-417, 1810-1815.	0.3	1
64	Preparation of Water-Insoluble Antheraea Pernyi Silk Fibroin Films. Advanced Materials Research, 0, 569, 311-315.	0.3	1
65	Regenerated <i>Antheraea pernyi </i> Silk Fibroin Nanofiber Film. Advanced Materials Research, 0, 465, 160-164.	0.3	1
66	Preparation and Mechanical and Optical Properties of SF/Pyrrolidone Blend Film. Materials Science Forum, 2015, 815, 327-331.	0.3	1
67	Performance of cross-linked silk fibroin membrane using tyrosinase. Materials Research Innovations, 2015, 19, S10-392-S10-396.	1.0	1
68	Study on Antheraea Pernyi Silk Fibroin Porous Materials. Advanced Materials Research, 2011, 332-334, 1718-1721.	0.3	0
69	Preparation of Transparent Water-Insoluble Silk Fibroin Films. Advanced Materials Research, 2011, 175-176, 79-84.	0.3	0
70	Study on Silk Fibroin/ Propylene Glycol Blend Films. Advanced Materials Research, 0, 627, 785-790.	0.3	0
71	Study on Silk Fibroin D-Mannose Blend Films. Advanced Materials Research, 0, 796, 112-116.	0.3	0
72	<i>In Vitro</i> Controlled Release of Topically Applied Capsaicin from Silk Hydrogel: A Study Contributed to the Pain Relief System. Materials Science Forum, 2015, 815, 332-335.	0.3	0

#	Article	IF	CITATIONS
73	Corneal Matrix Repair Carrier with Composite Silk Protein Membrane. Materials Science Forum, 2015, 815, 424-428.	0.3	0
74	Study on silk fibroin nanofibers with long length. Modern Physics Letters B, 2019, 33, 1950194.	1.0	0
75	Synthesis of 1,8-naphthimide-based fluorescent perchloroethylene and its application in the analysis of H2O/DMF composition. Research on Chemical Intermediates, 2021, 47, 2217.	1.3	0
76	Fabrication of Robust and High Resilient Polythiophene Conductive Polyamides Fibers Based on Tannic Acid Modification. Industrial & Engineering Chemistry Research, 2022, 61, 11025-11033.	1.8	0