Andreas Bernkop-Schnürch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9186291/publications.pdf

Version: 2024-02-01

475 papers 23,361 citations

74 h-index

9264

119 g-index

483 all docs 483 docs citations

483 times ranked 12857 citing authors

#	Article	IF	Citations
1	Chitosan-based drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 463-469.	4.3	755
2	Thiomers: A new generation of mucoadhesive polymers. Advanced Drug Delivery Reviews, 2005, 57, 1569-1582.	13.7	486
3	Thiolated polymers — thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates. Biomaterials, 2001, 22, 2345-2352.	11.4	431
4	Thiolated polymers—thiomers: synthesis and in vitro evaluation of chitosan–2-iminothiolane conjugates. International Journal of Pharmaceutics, 2003, 260, 229-237.	5. 2	393
5	Comparison of the mucoadhesive properties of various polymers. Advanced Drug Delivery Reviews, 2005, 57, 1713-1723.	13.7	380
6	Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 207-214.	4.3	355
7	Polymers with thiol groups: a new generation of mucoadhesive polymers?. Pharmaceutical Research, 1999, 16, 876-881.	3.5	303
8	The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. Journal of Controlled Release, 1998, 52, 1-16.	9.9	276
9	Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 115-121.	4.3	270
10	Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. Journal of Controlled Release, 2001, 71, 277-285.	9.9	239
11	Chitosan and its derivatives: potential excipients for peroral peptide delivery systems. International Journal of Pharmaceutics, 2000, 194, 1-13.	5.2	231
12	Mucoadhesive vs. mucopenetrating particulate drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 76-89.	4.3	227
13	Thiolated chitosans. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 9-17.	4.3	225
14	Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. European Journal of Pharmaceutical Sciences, 2019, 137, 104967.	4.0	222
15	Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosanހ"EDTA conjugates. Journal of Controlled Release, 1998, 50, 215-223.	9.9	207
16	Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. Journal of Controlled Release, 2004, 94, 177-186.	9.9	206
17	Preactivated thiomers as mucoadhesive polymers for drug delivery. Biomaterials, 2012, 33, 1528-1535.	11.4	164
18	The role of glutathione in the permeation enhancing effect of thiolated polymers. Pharmaceutical Research, 2002, 19, 602-608.	3.5	162

#	Article	IF	Citations
19	In vitro evaluation of the viscoelastic properties of chitosan–thioglycolic acid conjugates. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 55, 185-190.	4.3	161
20	Thiolated polymers: self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion. European Journal of Pharmaceutical Sciences, 2002, 15, 387-394.	4.0	159
21	Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. Journal of Controlled Release, 2004, 95, 547-555.	9.9	151
22	Development and Evaluation of a Novel Mucus Diffusion Test System Approved by Self-Nanoemulsifying Drug Delivery Systems. Journal of Pharmaceutical Sciences, 2013, 102, 4406-4413.	3.3	147
23	Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans. Journal of Controlled Release, 2003, 89, 419-428.	9.9	146
24	Nano-carrier systems: Strategies to overcome the mucus gel barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 447-453.	4.3	146
25	Development of controlled drug release systems based on thiolated polymers. Journal of Controlled Release, 2000, 66, 39-48.	9.9	144
26	Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials, 2005, 26, 819-826.	11.4	144
27	Thiomers: potential excipients for non-invasive peptide delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 253-263.	4.3	143
28	In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials, 2011, 32, 4052-4057.	11.4	132
29	Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Advanced Drug Delivery Reviews, 2022, 182, 114097.	13.7	132
30	Oral peptide drug delivery: polymer–inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials, 2000, 21, 1499-1507.	11.4	125
31	Design and in vitro evaluation of a novel bioadhesive vaginal drug delivery system for clotrimazole. Journal of Controlled Release, 2002, 81, 347-354.	9.9	120
32	Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. International Journal of Pharmaceutics, 2007, 343, 48-58.	5.2	120
33	Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 230-238.	4.3	120
34	In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. International Journal of Pharmaceutics, 2014, 472, 20-26.	5.2	118
35	In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials, 2006, 27, 4250-4255.	11.4	114
36	Thiolated chitosan microparticles: A vehicle for nasal peptide drug delivery. International Journal of Pharmaceutics, 2006, 307, 270-277.	5.2	113

#	Article	IF	Citations
37	Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 273-279.	4.3	113
38	Thiomers â€" From bench to market. Journal of Controlled Release, 2014, 195, 120-129.	9.9	111
39	Hydrophobic ion pairing: Key to highly payloaded self-emulsifying peptide drug delivery systems. International Journal of Pharmaceutics, 2017, 520, 267-274.	5.2	111
40	Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa. International Journal of Pharmaceutics, 2011, 408, 191-199.	5.2	110
41	Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 257-264.	4.3	108
42	Strategies to overcome the polycation dilemma in drug delivery. Advanced Drug Delivery Reviews, 2018, 136-137, 62-72.	13.7	105
43	SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Advanced Drug Delivery Reviews, 2019, 142, 91-101.	13.7	105
44	Synthesis and in Vitro Evaluation of a Novel Chitosan–Glutathione Conjugate. Pharmaceutical Research, 2005, 22, 1480-1488.	3.5	104
45	Thiomers: Preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. International Journal of Pharmaceutics, 2006, 317, 76-81.	5.2	104
46	Mucoadhesive systems in oral drug delivery. Drug Discovery Today: Technologies, 2005, 2, 83-87.	4.0	103
47	Modified Chitosans for Oral Drug Delivery. Journal of Pharmaceutical Sciences, 2009, 98, 1643-1656.	3.3	103
48	Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating. International Journal of Pharmaceutics, 2018, 538, 159-166.	5.2	101
49	Lipids and polymers in pharmaceutical technology: Lifelong companions. International Journal of Pharmaceutics, 2019, 558, 128-142.	5.2	101
50	Thiolated chitosan nanoparticles for the nasal administration of leuprolide: Bioavailability and pharmacokinetic characterization. International Journal of Pharmaceutics, 2012, 428, 164-170.	5.2	100
51	Design and in vivo evaluation of an oral delivery system for insulin. Pharmaceutical Research, 2000, 17, 1468-1474.	3.5	98
52	In situ gelling properties of chitosan-thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials, 2009, 30, 6151-6157.	11.4	96
53	Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate. International Journal of Pharmaceutics, 2008, 347, 79-85.	5.2	95
54	Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering?. International Journal of Pharmaceutics, 2003, 256, 183-189.	5.2	94

#	Article	IF	CITATIONS
55	Systemic peptide delivery via the stomach: in vivo evaluation of an oral dosage form for salmon calcitonin. Journal of Controlled Release, 2003, 92, 125-135.	9.9	92
56	Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation. International Journal of Pharmaceutics, 2016, 510, 255-262.	5.2	92
57	Methods to determine the interactions of micro- and nanoparticles with mucus. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 464-476.	4.3	91
58	Development and in vivo evaluation of papain-functionalized nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 125-131.	4.3	90
59	Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. Journal of Controlled Release, 2021, 330, 470-482.	9.9	90
60	S-Protected Thiolated Chitosan for Oral Delivery of Hydrophilic Macromolecules: Evaluation of Permeation Enhancing and Efflux Pump Inhibitory Properties. Molecular Pharmaceutics, 2012, 9, 1331-1341.	4.6	89
61	In vivo evaluation of an oral self-emulsifying drug delivery system (SEDDS) for exenatide. Journal of Controlled Release, 2018, 277, 165-172.	9.9	89
62	Thiolated Chitosans: Design and In Vivo Evaluation of a Mucoadhesive Buccal Peptide Drug Delivery System. Pharmaceutical Research, 2006, 23, 573-579.	3.5	88
63	Strategies to Prolong the Intravaginal Residence Time of Drug Delivery Systems. Journal of Pharmacy and Pharmaceutical Sciences, 2009, 12, 312.	2.1	88
64	Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Advanced Drug Delivery Reviews, 2019, 151-152, 191-221.	13.7	88
65	In Vivo Evaluation of an Oral Salmon Calcitonin-Delivery System Based on a Thiolated Chitosan Carrier Matrix. Pharmaceutical Research, 2003, 20, 1989-1994.	3 . 5	85
66	Nanocarrier systems for oral drug delivery: Do we really need them?. European Journal of Pharmaceutical Sciences, 2013, 49, 272-277.	4.0	85
67	Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews, 2021, 171, 289-331.	13.7	84
68	Development and in vitro evaluation of a mucoadhesive vaginal delivery system for progesterone. Journal of Controlled Release, 2001, 77, 323-332.	9.9	83
69	Development of buccal drug delivery systems based on a thiolated polymer. International Journal of Pharmaceutics, 2003, 252, 141-148.	5.2	83
70	Do drug release studies from SEDDS make any sense?. Journal of Controlled Release, 2018, 271, 55-59.	9.9	82
71	Development and in vitro evaluation of a thiomer-based nanoparticulate gene delivery system. Biomaterials, 2007, 28, 524-531.	11.4	80
72	The potential of cystine-knot microproteins as novel pharmacophoric scaffolds in oral peptide drug delivery. Journal of Drug Targeting, 2006, 14, 137-146.	4.4	79

#	Article	IF	Citations
73	Thiolated chitosans: useful excipients for oral drug delivery. Journal of Pharmacy and Pharmacology, 2010, 60, 273-281.	2.4	78
74	Novel pectin–4-aminothiophenole conjugate microparticles for colon-specific drug delivery. Journal of Controlled Release, 2010, 145, 240-246.	9.9	78
75	Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	78
76	Combining two technologies: Multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. International Journal of Biological Macromolecules, 2013, 61, 363-372.	7.5	78
77	Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules, 2021, 22, 24-56.	5.4	77
78	Nasal delivery of human growth hormone: in vitro and in vivo evaluation of a thiomer/glutathione microparticulate delivery system. Journal of Controlled Release, 2004, 100, 87-95.	9.9	76
79	Strategies for improving mucosal drug delivery. Nanomedicine, 2013, 8, 2061-2075.	3.3	76
80	Thiolated polymers: synthesis and in vitro evaluation of polymer–cysteamine conjugates. International Journal of Pharmaceutics, 2001, 226, 185-194.	5.2	75
81	Thiolation of polycarbophil enhances its inhibition of intestinal brush border membrane bound aminopeptidase N. Journal of Pharmaceutical Sciences, 2001, 90, 1907-1914.	3.3	75
82	Development and in vivo evaluation of an oral delivery system for low molecular weight heparin based on thiolated polycarbophil. Pharmaceutical Research, 2003, 20, 931-936.	3.5	75
83	In vivo comparison of various polymeric and low molecular mass inhibitors of intestinal P-glycoprotein. Biomaterials, 2006, 27, 5855-5860.	11.4	75
84	Development of a mucoadhesive nanoparticulate drug delivery system for a targeted drug release in the bladder. International Journal of Pharmaceutics, 2011, 416, 339-345.	5.2	75
85	Chemically modified chitosans as enzyme inhibitors. Advanced Drug Delivery Reviews, 2001, 52, 127-137.	13.7	73
86	Chitosan–thioglycolic acid conjugate: An alternative carrier for oral nonviral gene delivery?. Journal of Biomedical Materials Research - Part A, 2007, 82A, 1-9.	4.0	73
87	Strategies to prolong the residence time of drug delivery systems on ocular surface. Advances in Colloid and Interface Science, 2021, 288, 102342.	14.7	73
88	Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N. Pharmaceutical Research, 1997, 14, 917-922.	3.5	72
89	Mucus permeating thiomer nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 265-272.	4.3	72
90	Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 1703-1716.	5.0	72

#	Article	IF	Citations
91	Development and <i>in vitro</i> evaluation of slippery nanoparticles for enhanced diffusion through native mucus. Nanomedicine, 2014, 9, 387-396.	3.3	71
92	Development, in vitro and in vivo evaluation of a self-emulsifying drug delivery system (SEDDS) for oral enoxaparin administration. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 113-121.	4.3	71
93	In situ gelling and mucoadhesive polymers: why do they need each other?. Expert Opinion on Drug Delivery, 2018, 15, 1007-1019.	5.0	70
94	Multifunctional Matrices for Oral Peptide Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 2001, 18, 43.	2.2	70
95	S-protected thiolated chitosan: Synthesis and in vitro characterization. Carbohydrate Polymers, 2012, 90, 765-772.	10.2	69
96	Improvement in the in Situ Gelling Properties of Deacetylated Gellan Gum by the Immobilization of Thiol Groups. Journal of Pharmaceutical Sciences, 2003, 92, 1234-1241.	3.3	67
97	Novel Insulin Thiomer Nanoparticles: In Vivo Evaluation of an Oral Drug Delivery System. Biomacromolecules, 2008, 9, 278-285.	5.4	67
98	Synthesis, characterization, mucoadhesion and biocompatibility of thiolated carboxymethyl dextran–cysteine conjugate. Journal of Controlled Release, 2010, 144, 32-38.	9.9	67
99	Pre-systemic metabolism of orally administered drugs and strategies to overcome it. Journal of Controlled Release, 2014, 192, 301-309.	9.9	67
100	Synthesis and in vitro characterization of entirely S-protected thiolated pectin for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1266-1273.	4.3	66
101	Thiolated chitosan micelles: Highly mucoadhesive drug carriers. Carbohydrate Polymers, 2017, 167, 250-258.	10.2	66
102	Polyethylene imine-6-phosphogluconic acid nanoparticles – a novel zeta potential changing system. International Journal of Pharmaceutics, 2015, 483, 19-25.	5.2	65
103	Development and <i>in vitro </i> evaluation of an oral SEDDS for desmopressin. Drug Delivery, 2016, 23, 2074-2083.	5.7	65
104	Elaboration and characterization of thiolated chitosan-coated acrylic nanoparticles. International Journal of Pharmaceutics, 2006, 316, 170-175.	5.2	64
105	Comparison of the protective effect of self-emulsifying peptide drug delivery systems towards intestinal proteases and glutathione. International Journal of Pharmaceutics, 2017, 523, 357-365.	5.2	64
106	Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this?. European Journal of Pharmaceutical Sciences, 2019, 133, 190-204.	4.0	64
107	Development and in vitro characterisation of an oral self-emulsifying delivery system for daptomycin. European Journal of Pharmaceutical Sciences, 2016, 81, 129-136.	4.0	62
108	Thiomers: forms, functions and applications to nanomedicine. Nanomedicine, 2007, 2, 41-50.	3.3	61

#	Article	IF	Citations
109	Improved synthesis and in vitro characterization of chitosan–thioethylamidine conjugate. Biomaterials, 2006, 27, 127-135.	11.4	60
110	Development and in vivo evaluation of an oral drug delivery system for paclitaxel. Biomaterials, 2011, 32, 170-175.	11.4	60
111	Self-nanoemulsifying drug delivery systems as novel approach for pDNA drug delivery. International Journal of Pharmaceutics, 2015, 487, 25-31.	5.2	60
112	Impact of different hydrophobic ion pairs of octreotide on its oral bioavailability in pigs. Journal of Controlled Release, 2018, 273, 21-29.	9.9	60
113	Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier. Advanced Drug Delivery Reviews, 2018, 124, 164-174.	13.7	60
114	Basic studies on bioadhesive delivery systems for peptide and protein drugs. International Journal of Pharmaceutics, 1998, 165, 217-225.	5.2	59
115	Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate. International Journal of Pharmaceutics, 2004, 278, 353-360.	5.2	59
116	Comparative in vivo mucoadhesion studies of thiomer formulations using magnetic resonance imaging and fluorescence detection. Journal of Controlled Release, 2006, 115, 78-84.	9.9	59
117	Thiolated chitosan: Development and in vitro evaluation of an oral delivery system for acyclovir. International Journal of Pharmaceutics, 2008, 348, 54-60.	5.2	59
118	Advanced formulations for intranasal delivery of biologics. International Journal of Pharmaceutics, 2018, 553, 8-20.	5.2	58
119	Insulin loaded mucus permeating nanoparticles: Addressing the surface characteristics as feature to improve mucus permeation. International Journal of Pharmaceutics, 2016, 500, 236-244.	5.2	56
120	Thiolated chitosan: Development and in vivo evaluation of an oral delivery system for leuprolide. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 95-102.	4.3	55
121	Preactivated hyaluronic acid: A potential mucoadhesive polymer for vaginal delivery. International Journal of Pharmaceutics, 2015, 478, 383-389.	5.2	55
122	Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles. International Journal of Pharmaceutics, 2006, 319, 139-146.	5.2	54
123	Development and In Vitro Evaluation of Surface Modified Poly(lactide-co-glycolide) Nanoparticles with Chitosan-4-Thiobutylamidine. Drug Development and Industrial Pharmacy, 2007, 33, 767-774.	2.0	54
124	Chitosan-EDTA Conjugate: A Novel Polymer for Topical Gels. Journal of Pharmacy and Pharmacology, 2011, 50, 445-452.	2.4	53
125	Impact of lipases on the protective effect of SEDDS for incorporated peptide drugs towards intestinal peptidases. International Journal of Pharmaceutics, 2016, 508, 102-108.	5 . 2	53
126	Thiolated Hyaluronic Acid as Versatile Mucoadhesive Polymer: From the Chemistry Behind to Product Developmentsâ€"What Are the Capabilities?. Polymers, 2018, 10, 243.	4.5	53

#	Article	IF	CITATIONS
127	Thiolated carboxymethylcellulose: in vitro evaluation of its permeation enhancing effect on peptide drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 51, 25-32.	4.3	52
128	The use of thiolated polymers as carrier matrix in oral peptide deliveryâ€"Proof of concept. Journal of Controlled Release, 2005, 106, 26-33.	9.9	52
129	Evaluation and improvement of the properties of the novel cystine-knot microprotein McoEeTI for oral administration. International Journal of Pharmaceutics, 2007, 332, 72-79.	5.2	52
130	Correlation of in vitro and in vivo models for the oral absorption of peptide drugs. Amino Acids, 2008, 35, 233-241.	2.7	52
131	Thiomers: development and in vitro evaluation of a peroral microparticulate peptide delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 181-187.	4.3	51
132	The Impact of Vehicles on the Mucoadhesive Properties of Orally Administrated Nanoparticles: a Case Study with Chitosan-4-Thiobutylamidine Conjugate. AAPS PharmSciTech, 2010, 11, 1185-1192.	3.3	51
133	Synthesis and characterization of thiolated \hat{l}^2 -cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. Carbohydrate Polymers, 2015, 132, 187-195.	10.2	51
134	Lipophilic peptide character – What oral barriers fear the most. Journal of Controlled Release, 2017, 255, 242-257.	9.9	51
135	Deoxycholate-hydrogels: novel drug carrier systems for topical use. International Journal of Pharmaceutics, 1999, 185, 103-111.	5.2	50
136	Thiomers for oral delivery of hydrophilic macromolecular drugs. Expert Opinion on Drug Delivery, 2004, 1, 87-98.	5.0	50
137	In Vivo Evaluation of a Nasal Insulin Delivery System Based on Thiolated Chitosan. Journal of Pharmaceutical Sciences, 2006, 95, 2463-2472.	3.3	50
138	Thiolated chitosans: Development and in vitro evaluation of an oral tobramycin sulphate delivery system. European Journal of Pharmaceutical Sciences, 2008, 33, 1-8.	4.0	50
139	Development and In Vitro Evaluation of a Mucoadhesive Vaginal Delivery System for Nystatin. Journal of Pharmaceutical Sciences, 2009, 98, 555-564.	3.3	50
140	Chitosan solutions and particles: Evaluation of their permeation enhancing potential on MDCK cells used as blood brain barrier model. International Journal of Pharmaceutics, 2009, 376, 104-109.	5.2	50
141	Design and synthesis of a novel cationic thiolated polymer. International Journal of Pharmaceutics, 2011, 411, 10-17.	5.2	50
142	Development of a nasal spray containing xylometazoline hydrochloride and iota-carrageenan for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis. International Journal of General Medicine, 2018, Volume 11, 275-283.	1.8	50
143	Self-emulsifying drug delivery systems: Impact of stability of hydrophobic ion pairs on drug release. International Journal of Pharmaceutics, 2019, 561, 197-205.	5.2	50
144	Thiomers: promising platform for macromolecular drug delivery. Future Medicinal Chemistry, 2012, 4, 2205-2216.	2.3	49

#	Article	IF	CITATIONS
145	Design and evaluation of an intravesical delivery system for superficial bladder cancer: preparation of gemcitabine HCl-loaded chitosan–thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. International Journal of Nanomedicine, 2015, 10, 6493.	6.7	49
146	Development and in vitro characterization of a papain loaded mucolytic self-emulsifying drug delivery system (SEDDS). International Journal of Pharmaceutics, 2017, 530, 346-353.	5.2	49
147	S-protected gellan gum: Decisive approach towards mucoadhesive antimicrobial vaginal films. International Journal of Biological Macromolecules, 2019, 130, 148-157.	7.5	48
148	Synthesis and in vitro evaluation of chitosan-EDTA-protease-inhibitor conjugates which might be useful in oral delivery of peptides and proteins., 1998, 15, 263-269.		47
149	Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion. International Journal of Pharmaceutics, 2004, 274, 97-105.	5.2	47
150	Role of Sulfhydryl Groups in Transfection? A Case Study with Chitosanâ^'NAC Nanoparticles. Bioconjugate Chemistry, 2007, 18, 1028-1035.	3.6	47
151	Cell-penetrating <i>self-nanoemulsifying drug delivery systems</i> (SNEDDS) for oral gene delivery. Expert Opinion on Drug Delivery, 2016, 13, 1503-1512.	5.0	47
152	Mucus permeating thiolated self-emulsifying drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 90-97.	4.3	47
153	Zeta Potential Changing Polyphosphate Nanoparticles: A Promising Approach To Overcome the Mucus and Epithelial Barrier. Molecular Pharmaceutics, 2019, 16, 2817-2825.	4.6	47
154	Oral gene delivery: Strategies to improve stability of pDNA towards intestinal digestion. Journal of Drug Targeting, 2006, 14, 311-319.	4.4	46
155	Thiomers in noninvasive polypeptide delivery: In vitro and in vivo characterization of a polycarbophilâ€eysteine/glutathione gel formulation for human growth hormone. Journal of Pharmaceutical Sciences, 2004, 93, 1682-1691.	3.3	45
156	In Vivo Evaluation of Thiolated Chitosan Tablets for Oral Insulin Delivery. Journal of Pharmaceutical Sciences, 2014, 103, 3165-3170.	3.3	45
157	Development of phosphorylated nanoparticles as zeta potential inverting systems. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 250-256.	4.3	45
158	Nasal drug delivery: Design of a novel mucoadhesive and in situ gelling polymer. International Journal of Pharmaceutics, 2017, 517, 196-202.	5.2	45
159	Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 161-169.	4.3	45
160	Zeta potential changing self-emulsifying drug delivery systems containing phosphorylated polysaccharides. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 264-270.	4.3	45
161	Hydrophobic ion-pairs and lipid-based nanocarrier systems: The perfect match for delivery of BCS class 3 drugs. Journal of Controlled Release, 2019, 304, 146-155.	9.9	45
162	Pectin-cysteine conjugate: synthesis and in-vitro evaluation of its potential for drug delivery. Journal of Pharmacy and Pharmacology, 2010, 58, 1601-1610.	2.4	44

#	Article	IF	Citations
163	Mucoadhesive hydrogels for buccal drug delivery: In vitro-in vivo correlation study. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 498-505.	4.3	44
164	Cationic starch derivatives as mucoadhesive and soluble excipients in drug delivery. International Journal of Pharmaceutics, 2019, 570, 118664.	5.2	44
165	In vitro evaluation of natural and methylated cyclodextrins as buccal permeation enhancing system for omeprazole delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 339-345.	4.3	43
166	Design and in vitro evaluation of a novel polymeric P-glycoprotein (P-gp) inhibitor. Journal of Controlled Release, 2010, 147, 62-69.	9.9	43
167	S-protected thiolated cyclodextrins as mucoadhesive oligomers for drug delivery. Journal of Colloid and Interface Science, 2018, 531, 261-268.	9.4	43
168	Self-emulsifying drug delivery systems and cationic surfactants: do they potentiate each other in cytotoxicity?. Journal of Pharmacy and Pharmacology, 2019, 71, 156-166.	2.4	43
169	In vitro evaluation of polymeric excipients protecting calcitonin against degradation by intestinal serine proteases. International Journal of Pharmaceutics, 2003, 252, 187-196.	5. 2	42
170	Mucoadhesive Drug Delivery Systems. Handbook of Experimental Pharmacology, 2010, , 251-266.	1.8	42
171	Thiolated hydroxyethyl cellulose: Design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 149-155.	4.3	42
172	Mucoadhesive polymers: strategies, achievements and future challenges. Advanced Drug Delivery Reviews, 2005, 57, 1553-1555.	13.7	41
173	In vivo evaluation of an oral drug delivery system for peptides based on S-protected thiolated chitosan. Journal of Controlled Release, 2012, 160, 477-485.	9.9	41
174	Thiolated particles as effective intravesical drug delivery systems for treatment of bladder-related diseases. Nanomedicine, 2013, 8, 65-75.	3.3	41
175	Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Advanced Functional Materials, 2021, 31, 2103347.	14.9	41
176	An adhesive drug delivery system based on K99-fimbriae. European Journal of Pharmaceutical Sciences, 1995, 3, 293-299.	4.0	40
177	Thiomers. American Journal of Drug Delivery, 2005, 3, 141-154.	0.6	40
178	Synthesis and In Vitro Evaluation of Chitosan-Thioglycolic Acid Conjugates. Scientia Pharmaceutica, 2001, 69, 109-118.	2.0	39
179	Preparation and in vitro characterization of poly(acrylic acid)–cysteine microparticles. Journal of Controlled Release, 2003, 93, 29-38.	9.9	39
180	Chitosan-graft-6-mercaptonicotinic Acid: Synthesis, Characterization, and Biocompatibility. Biomacromolecules, 2009, 10, 3023-3027.	5.4	39

#	Article	IF	Citations
181	Preactivated thiomers: Permeation enhancing properties. International Journal of Pharmaceutics, 2012, 438, 217-224.	5.2	39
182	Synergistic effects of conjugating cell penetrating peptides and thiomers on non-viral transfection efficiency. Biomaterials, 2012, 33, 2321-2326.	11.4	39
183	Peptidase activity on the surface of the porcine buccal mucosa. International Journal of Pharmaceutics, 2002, 233, 141-147.	5.2	38
184	Viscoelastic Properties of a New in situ Gelling Thiolated Chitosan Conjugate. Drug Development and Industrial Pharmacy, 2005, 31, 885-893.	2.0	38
185	Preactivated thiomers for vaginal drug delivery vehicles. Biomaterials, 2013, 34, 7811-7818.	11.4	38
186	S-preactivated thiolated glycol chitosan useful to combine mucoadhesion and drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 103-111.	4.3	38
187	Zeta potential changing self-emulsifying drug delivery systems: A promising strategy to sequentially overcome mucus and epithelial barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 40-49.	4.3	38
188	Arginine-based cationic surfactants: Biodegradable auxiliary agents for the formation of hydrophobic ion pairs with hydrophilic macromolecular drugs. Journal of Colloid and Interface Science, 2019, 552, 287-294.	9.4	38
189	Direct compressible polymethacrylic acid–starch compositions for site-specific drug delivery. Journal of Controlled Release, 2001, 75, 93-102.	9.9	37
190	In Vitro Evaluation of the Permeation Enhancing Effect of Polycarbophil–Cysteine Conjugates on the Cornea of Rabbits. Journal of Pharmaceutical Sciences, 2002, 91, 2588-2592.	3.3	37
191	Intravaginal Drug Delivery Systems. American Journal of Drug Delivery, 2003, 1, 241-254.	0.6	37
192	In vitro evaluation of chitosan-EDTA conjugate polyplexes as a nanoparticulate gene delivery system. AAPS Journal, 2006, 8, E756-E764.	4.4	37
193	Presystemic Metabolism of Orally Administered Peptide Drugs and Strategies to Overcome It. Current Drug Metabolism, 2007, 8, 509-517.	1.2	37
194	Preactivated thiomers: Evaluation of gastroretentive minitablets. International Journal of Pharmaceutics, 2013, 456, 473-479.	5.2	37
195	Enzymatic degradation of thiolated chitosan. Drug Development and Industrial Pharmacy, 2013, 39, 1531-1539.	2.0	37
196	Preactivated thiomers: their role in drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 1269-1281.	5.0	37
197	Self-emulsifying drug delivery systems: Design of a novel vaginal delivery system for curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 268-275.	4.3	37
198	Mucoadhesive self-emulsifying delivery systems for ocular administration of econazole. International Journal of Pharmaceutics, 2018, 541, 72-80.	5.2	37

#	Article	IF	Citations
199	Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. International Journal of Biological Macromolecules, 2019, 133, 647-655.	7.5	37
200	In Vitro Evaluation of Various Buccal Permeation Enhancing Systems for PACAP (Pituitary Adenylate) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
201	<i>In vitro</i> cytotoxicity testing of non-thiolated and thiolated chitosan nanoparticles for oral gene delivery. Nanotoxicology, 2007, 1, 139-148.	3.0	36
202	Chitosan-N-Acetyl Cysteine Conjugates:In VitroEvaluation of Permeation Enhancing and P-Glycoprotein Inhibiting Properties. Drug Delivery, 2008, 15, 245-252.	5.7	36
203	Thiolated hydroxyethylcellulose: Synthesis and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 421-427.	4.3	36
204	Improved paracellular uptake by the combination of different types of permeation enhancers. International Journal of Pharmaceutics, 2005, 288, 141-150.	5.2	35
205	Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers. International Journal of Pharmaceutics, 2008, 348, 169-174.	5.2	35
206	<i>In Vitro</i> Evaluation of Mucoadhesive Vaginal Tablets of Antifungal Drugs Prepared with Thiolated Polymer and Development of a New Dissolution Technique for Vaginal Formulations. Chemical and Pharmaceutical Bulletin, 2011, 59, 952-958.	1.3	35
207	Chitosan–gum arabic polyelectrolyte complex films: physicochemical, mechanical and mucoadhesive properties. Pharmaceutical Development and Technology, 2016, 21, 590-599.	2.4	35
208	Trypsin decorated self-emulsifying drug delivery systems (SEDDS): Key to enhanced mucus permeation. Journal of Colloid and Interface Science, 2018, 531, 253-260.	9.4	35
209	Highly mucus permeating and zeta potential changing self-emulsifying drug delivery systems: A potent gene delivery model for causal treatment of cystic fibrosis. International Journal of Pharmaceutics, 2019, 557, 124-134.	5.2	35
210	In vivo determination of the time and location of mucoadhesive drug delivery systems disintegration in the gastrointestinal tract. Magnetic Resonance Imaging, 2008, 26, 638-643.	1.8	34
211	Thiolated chitosans: influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties. Drug Development and Industrial Pharmacy, 2011, 37, 648-655.	2.0	34
212	The use of chitosan-6-mercaptonicotinic acid nanoparticles for oral peptide drug delivery. Drug Delivery, 2011, 18, 190-197.	5.7	34
213	Uptake of phenothiazines by the harvested chylomicrons ex vivo model: Influence of self-nanoemulsifying formulation design. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 171-180.	4.3	34
214	Synthesis and Characterization of pH Tolerant and Mucoadhesive (Thiol–Polyethylene Glycol) Chitosan Graft Polymer for Drug Delivery. Journal of Pharmaceutical Sciences, 2014, 103, 594-601.	3.3	34
215	Development and in vitro evaluation of a self-emulsifying drug delivery system (SEDDS) for oral vancomycin administration. International Journal of Pharmaceutics, 2019, 554, 125-133.	5.2	34
216	S-protected thiolated hyaluronic acid: In-situ crosslinking hydrogels for 3D cell culture scaffold. Carbohydrate Polymers, 2020, 237, 116092.	10.2	34

#	Article	IF	Citations
217	Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. Advanced Therapeutics, 2022, 5, .	3.2	34
218	In vivo evaluation of thiolated poly(acrylic acid) as a drug absorption modulator for MRP2 efflux pump substrates. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 561-566.	4.3	33
219	Mucoadhesive micro-composites: Chitosan coated halloysite nanotubes for sustained drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110527.	5.0	33
220	Zeta potential changing nanoemulsions based on a simple zwitterion. Journal of Colloid and Interface Science, 2021, 585, 126-137.	9.4	33
221	Development and in vitro evaluation of systems to protect peptide drugs from aminopeptidase N., 1997, 14, 181-185.		32
222	Anionic Mucoadhesive Polymers as Auxiliary Agents for the Peroral Administration of (Poly)Peptide Drugs: Influence of the Gastric Juice. Drug Development and Industrial Pharmacy, 2000, 26, 107-113.	2.0	32
223	Thiolated polymers: Evaluation of the influence of the amount of covalently attached l-cysteine to poly(acrylic acid). European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 405-412.	4.3	32
224	Preparation and evaluation of microparticles from thiolated polymers via air jet milling. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 476-485.	4.3	32
225	Thiolated silicone oil: Synthesis, gelling and mucoadhesive properties. Acta Biomaterialia, 2015, 16, 169-177.	8.3	32
226	Thiolated α-Cyclodextrin: The Invisible Choice to Prolong Ocular Drug Residence Time. Journal of Pharmaceutical Sciences, 2016, 105, 2848-2854.	3.3	32
227	Mucus permeating self-emulsifying drug delivery systems (SEDDS): About the impact of mucolytic enzymes. Colloids and Surfaces B: Biointerfaces, 2018, 161, 228-235.	5.0	32
228	Thiolated cyclodextrins: Mucoadhesive and permeation enhancing excipients for ocular drug delivery. International Journal of Pharmaceutics, 2021, 599, 120451.	5.2	32
229	Polymer–cysteamine conjugates: new mucoadhesive excipients for drug delivery?. International Journal of Pharmaceutics, 2002, 234, 91-99.	5.2	31
230	Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties. International Journal of Nanomedicine, 2012, 7, 2523.	6.7	31
231	Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid) – A new generation of multifunctional polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 390-396.	4.3	31
232	Evaluation of functional characteristics of preactivated thiolated chitosan as potential therapeutic agent for dry mouth syndrome. Acta Biomaterialia, 2015, 21, 123-131.	8.3	31
233	Preactivated thiolated nanoparticles: A novel mucoadhesive dosage form. International Journal of Pharmaceutics, 2016, 497, 123-128.	5.2	31
234	Novel bioadhesive polymers as intra-articular agents: Chondroitin sulfate-cysteine conjugates. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 101, 25-32.	4.3	31

#	Article	IF	Citations
235	Entirely S-protected chitosan: A promising mucoadhesive excipient for metronidazole vaginal tablets. Acta Biomaterialia, 2017, 64, 106-115.	8.3	31
236	Development of a Novel Method for the Preparation of Thiolated Polyacrylic Acid Nanoparticles. Pharmaceutical Research, 2006, 23, 2183-2189.	3.5	30
237	Phosphorothioate Oligonucleotide Quantification by $\hat{l}^{1}\!/_{4}$ -Liquid Chromatography-Mass Spectrometry. AAPS Journal, 2012, 14, 728-737.	4.4	30
238	Design and <i>inÂvitro</i> evaluation of a novel polymeric excipient for buccal applications. Future Medicinal Chemistry, 2013, 5, 511-522.	2.3	30
239	Non-Clinical Safety Evaluation of Intranasal Iota-Carrageenan. PLoS ONE, 2015, 10, e0122911.	2.5	30
240	Thiolated nanocarriers for oral delivery of hydrophilic macromolecular drugs. Carbohydrate Polymers, 2015, 117, 577-584.	10.2	30
241	Thiolated hydroxypropyl-Î ² -cyclodextrin as mucoadhesive excipient for oral delivery of budesonide in liquid paediatric formulation. International Journal of Pharmaceutics, 2019, 572, 118820.	5.2	30
242	Cellular uptake of self-emulsifying drug-delivery systems: polyethylene glycol versus polyglycerol surface. Nanomedicine, 2020, 15, 1829-1841.	3.3	30
243	Chitosan-4-mercaptobenzoic acid: synthesis and characterization of a novel thiolated chitosan. Journal of Materials Chemistry, 2010, 20, 2432.	6.7	30
244	Polymeric Efflux Pump Inhibitors in Oral Drug Delivery. American Journal of Drug Delivery, 2006, 4, 263-272.	0.6	29
245	Insulin-loaded poly(acrylic acid)-cysteine nanoparticles: Stability studies towards digestive enzymes of the intestine. Drug Delivery, 2009, 16, 254-260.	5.7	29
246	HEC-cysteamine conjugates: Influence of degree of thiolation on efflux pump inhibitory and permeation enhancing properties. International Journal of Pharmaceutics, 2012, 422, 40-46.	5.2	29
247	Thiolated graphene oxide as promising mucoadhesive carrier for hydrophobic drugs. International Journal of Pharmaceutics, 2016, 509, 360-367.	5.2	29
248	Development of pre-activated \hat{l}_{\pm} -cyclodextrin as a mucoadhesive excipient for intra-vesical drug delivery. International Journal of Pharmaceutics, 2017, 534, 339-347.	5.2	29
249	A gellan gum derivative as in-situ gelling cationic polymer for nasal drug delivery. International Journal of Biological Macromolecules, 2020, 158, 1037-1046.	7.5	29
250	Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 10-17.	4.3	29
251	Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. Advanced Science, 2022, 9, e2102451.	11.2	29
252	Modified mucoadhesive polymers for the peroral administration of mainly elastase degradable therapeutic (poly)peptides. Journal of Controlled Release, 1997, 47, 113-121.	9.9	28

#	Article	IF	CITATIONS
253	Development of a novel method for the preparation of submicron particles based on thiolated chitosan. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 166-172.	4.3	28
254	Mucoadhesive polymers in the treatment of dry X syndrome. Drug Discovery Today, 2016, 21, 1051-1062.	6.4	28
255	Zeta potential changing nanoemulsions: Impact of PEG-corona on phosphate cleavage. International Journal of Pharmaceutics, 2020, 581, 119299.	5.2	28
256	Intestinal Peptide and Protein Delivery: Novel Bioadhesive Drug-Carrier Matrix Shielding from Enzymatic Attack. Journal of Pharmaceutical Sciences, 1998, 87, 430-434.	3.3	27
257	Evaluation of the potential of air jet milling of solid protein-poly(acrylate) complexes for microparticle preparation. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62, 260-266.	4.3	27
258	Enhanced transport of P-glycoprotein substrate saquinavir in presence of thiolated chitosan. Journal of Drug Targeting, 2007, 15, 132-139.	4.4	27
259	Development and <i>in vitro </i> evaluation of a buccal drug delivery system based on preactivated thiolated pectin. Drug Development and Industrial Pharmacy, 2014, 40, 1530-1537.	2.0	27
260	Self-emulsifying drug delivery systems (SEDDS): Proof-of-concept how to make them mucoadhesive. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 51-57.	4.3	27
261	Zeta potential changing self-emulsifying drug delivery systems utilizing a novel Janus-headed surfactant: A promising strategy for enhanced mucus permeation. Journal of Molecular Liquids, 2019, 291, 111285.	4.9	27
262	Oral heparin delivery: Design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system. Journal of Pharmaceutical Sciences, 2005, 94, 966-973.	3.3	26
263	Totally S-protected hyaluronic acid: Evaluation of stability and mucoadhesive properties as liquid dosage form. Carbohydrate Polymers, 2016, 152, 632-638.	10.2	26
264	Improved mucoadhesive properties of self-nanoemulsifying drug delivery systems (SNEDDS) by introducing acyl chitosan. International Journal of Pharmaceutics, 2017, 519, 206-212.	5.2	26
265	Development and <i>in vitro</i> characterization of self-emulsifying drug delivery system (SEDDS) for oral opioid peptide delivery. Drug Development and Industrial Pharmacy, 2017, 43, 1694-1702.	2.0	26
266	Self-emulsifying drug delivery systems changing their zeta potential via a flip-flop mechanism. International Journal of Pharmaceutics, 2018, 550, 200-206.	5.2	26
267	Per-6-Thiolated Cyclodextrins: A Novel Type of Permeation Enhancing Excipients for BCS Class IV Drugs. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7942-7950.	8.0	26
268	Synthesis and evaluation of lysozyme derivatives exhibiting an enhanced antimicrobial action. European Journal of Pharmaceutical Sciences, 1998, 6, 301-306.	4.0	25
269	Synthesis and In Vitro Characterization of a Poly(Acrylic Acid)â€Homocysteine Conjugate. Drug Development and Industrial Pharmacy, 2004, 30, 1-8.	2.0	25
270	Development of a Sustained Release Dosage Form for αâ€Lipoic Acid. II. Evaluation in Human Volunteers. Drug Development and Industrial Pharmacy, 2004, 30, 35-42.	2.0	25

#	Article	IF	CITATIONS
271	Efficient MRI labeling of endothelial progenitor cells: Design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 346-355.	4.3	25
272	Development of oral self nano-emulsifying delivery system(s) of lanreotide with improved stability against presystemic thiol-disulfide exchange reactions. Expert Opinion on Drug Delivery, 2016, 13, 923-929.	5.0	25
273	Thiolated Cyclodextrin: Development of a Mucoadhesive Vaginal Delivery System for Acyclovir. Journal of Pharmaceutical Sciences, 2016, 105, 1714-1720.	3.3	25
274	Multifunctional adhesive polymers: Preactivated thiolated chitosan-EDTA conjugates. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 111, 26-32.	4.3	25
275	Zeta potential changing nanoemulsions based on phosphate moiety cleavage of a PEGylated surfactant. Journal of Molecular Liquids, 2020, 316, 113868.	4.9	25
276	Phosphorylated PEG-emulsifier: Powerful tool for development of zeta potential changing self-emulsifying drug delivery systems (SEDDS). European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 77-86.	4.3	25
277	Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 109-119.	4.3	25
278	Thiolated chitosans: Are Cys-Cys ligands key to the next generation?. Carbohydrate Polymers, 2020, 242, 116395.	10.2	25
279	Absorption and Metabolism of Resveratrol Carboxyesters and Methanesulfonate by Explanted Rat Intestinal Segments. Cellular Physiology and Biochemistry, 2009, 24, 557-566.	1.6	24
280	Poly(acrylic acid)–cysteine for oral vitamin B12 delivery. Analytical Biochemistry, 2012, 420, 13-19.	2.4	24
281	Synthesis and In Vitro Evaluation of Thiolated Carrageenan. Journal of Pharmaceutical Sciences, 2015, 104, 2523-2530.	3.3	24
282	ζ potential changing nanoparticles as cystic fibrosis transmembrane conductance regulator gene delivery system: an <i>in vitro</i> evaluation. Nanomedicine, 2017, 12, 2713-2724.	3.3	24
283	Non-ionic thiolated cyclodextrins & Double 13, 4003-4013.	6.7	24
284	Development of self-emulsifying drug delivery systems (SEDDS) for ciprofloxacin with improved mucus permeating properties. International Journal of Pharmaceutics, 2018, 547, 282-290.	5.2	24
285	Diaminated Starch: A Competitor of Chitosan with Highly Mucoadhesive Properties due to Increased Local Cationic Charge Density. Biomacromolecules, 2020, 21, 999-1008.	5.4	24
286	In Vitro Investigation of Thiolated Chitosan Derivatives as Mucoadhesive Coating Materials for Solid Lipid Nanoparticles. Biomacromolecules, 2021, 22, 3980-3991.	5.4	24
287	Preparation and characterisation of thiolated poly(methacrylic acid)–starch compositions. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 219-224.	4.3	23

Development of a mucoadhesive and permeation enhancing buccal delivery system for PACAP (pituitary) Tj ETQq0 0.0 rgBT /Qyerlock 10

#	Article	IF	Citations
289	Improvement of the intestinal membrane permeability of low molecular weight heparin by complexation with stem bromelain. International Journal of Pharmaceutics, 2006, 326, 153-159.	5.2	23
290	Papain: An Effective Permeation Enhancer for Orally Administered Low Molecular Weight Heparin. Pharmaceutical Research, 2007, 24, 1001-1006.	3.5	23
291	Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats. Journal of Drug Targeting, 2008, 16, 149-155.	4.4	23
292	Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells. Drug Development and Industrial Pharmacy, 2011, 37, 1455-1462.	2.0	23
293	Development and in vivo characterization of a novel peptide drug delivery system providing extended plasma half life. Journal of Controlled Release, 2012, 157, 375-382.	9.9	23
294	Thinking continuously: a microreactor for the production and scale-up of biodegradable, self-assembled nanoparticles. Polymer Chemistry, 2013, 4, 2342.	3.9	23
295	Synthesis and in vitro characterization of a novel S-protected thiolated alginate. Carbohydrate Polymers, 2015, 124, 1-7.	10.2	23
296	An in-vitro exploration of permeation enhancement by novel polysulfonate thiomers. International Journal of Pharmaceutics, 2015, 496, 304-313.	5.2	23
297	In vitro characterization of insulin containing thiomeric microparticles as nasal drug delivery system. European Journal of Pharmaceutical Sciences, 2016, 81, 157-161.	4.0	23
298	Nanocarriers protecting toward an intestinal pre-uptake metabolism. Nanomedicine, 2017, 12, 255-269.	3.3	23
299	Cosolvents in Self-Emulsifying Drug Delivery Systems (SEDDS): Do They Really Solve Our Solubility Problems?. Molecular Pharmaceutics, 2020, 17, 3236-3245.	4.6	23
300	Self-Emulsifying Drug Delivery Systems: Hydrophobic Drug Polymer Complexes Provide a Sustained Release in Vitro. Molecular Pharmaceutics, 2020, 17, 3709-3719.	4.6	23
301	Charge reversal self-emulsifying drug delivery systems: A comparative study among various phosphorylated surfactants. Journal of Colloid and Interface Science, 2021, 589, 532-544.	9.4	23
302	Spray-dried mucoadhesive microparticles based on S-protected thiolated hydroxypropyl- \hat{l}^2 -cyclodextrin for budesonide nasal delivery. International Journal of Pharmaceutics, 2021, 603, 120728.	5.2	23
303	Thiolated pectins: In vitro and ex vivo evaluation of three generations of thiomers. Acta Biomaterialia, 2021, 135, 139-149.	8.3	23
304	Degradation of teriparatide by gastro-intestinal proteolytic enzymes. Journal of Drug Targeting, 2006, 14, 109-115.	4.4	22
305	Oral peptide delivery: in-vitro evaluation of thiolated alginate/poly(acrylic acid) microparticles. Journal of Pharmacy and Pharmacology, 2010, 59, 1191-1198.	2.4	22
306	Development and in vivo bioavailability study of an oral fondaparinux delivery system. European Journal of Pharmaceutical Sciences, 2010, 41, 489-497.	4.0	22

#	Article	IF	Citations
307	Development and in vivo evaluation of an oral vitamin B12 delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 132-137.	4.3	22
308	Oral self-nanoemulsifying peptide drug delivery systems: impact of lipase on drug release. Journal of Microencapsulation, 2015, 32, 401-407.	2.8	22
309	About the impact of water movement on the permeation behaviour of nanoparticles in mucus. International Journal of Pharmaceutics, 2017, 517, 279-285.	5.2	22
310	Zeta-potential-changing nanoparticles conjugated with cell-penetrating peptides for enhanced transfection efficiency. Nanomedicine, 2017, 12, 963-975.	3.3	22
311	Surface phosphorylation of nanoparticles by hexokinase: A powerful tool for cellular uptake improvement. Journal of Colloid and Interface Science, 2018, 516, 384-391.	9.4	22
312	Intestinal enzyme delivery: Chitosan/tripolyphosphate nanoparticles providing a targeted release behind the mucus gel barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 125-131.	4.3	22
313	Oral self-emulsifying delivery systems for systemic administration of therapeutic proteins: science fiction?. Journal of Drug Targeting, 2019, 27, 1017-1024.	4.4	22
314	Thiolated cyclodextrins: New perspectives for old excipients. Coordination Chemistry Reviews, 2020, 420, 213433.	18.8	22
315	Tetradeca-thiolated cyclodextrins: Highly mucoadhesive and in-situ gelling oligomers with prolonged mucosal adhesion. International Journal of Pharmaceutics, 2020, 577, 119040.	5.2	22
316	Hydrophobic ion pairing (HIP) of (poly)peptide drugs: Benefits and drawbacks of different preparation methods. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 73-80.	4.3	22
317	Thiolated Hydroxypropyl-Î ² -cyclodextrin: A Potential Multifunctional Excipient for Ocular Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 2612.	4.1	22
318	Hydrophobic Thiolation of Pectin with 4-Aminothiophenol: Synthesis and In Vitro Characterization. AAPS PharmSciTech, 2010, 11, 174-180.	3.3	21
319	Thiopyrazole preactivated chitosan: Combining mucoadhesion and drug delivery. Acta Biomaterialia, 2013, 9, 6585-6593.	8.3	21
320	Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): Synthesis and evaluation of mucoadhesive potential. European Journal of Pharmaceutical Sciences, 2014, 63, 132-139.	4.0	21
321	Zeta potential changing phosphorylated nanocomplexes for pDNA delivery. International Journal of Pharmaceutics, 2016, 504, 117-124.	5.2	21
322	Nanoparticular delivery system for a secretoneurin derivative induces angiogenesis in a hind limb ischemia model. Journal of Controlled Release, 2017, 250, 1-8.	9.9	21
323	Polyphosphate coatings: A promising strategy to overcome the polycation dilemma. Journal of Colloid and Interface Science, 2021, 587, 279-289.	9.4	21
324	Development and in vivo evaluation of a new oral nanoparticulate dosage form for leuprolide based on polyacrylic acid. Drug Delivery, 2011, 18, 432-440.	5.7	20

#	Article	IF	CITATIONS
325	Thiomers: Inhibition of cytochrome P450 activity. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 361-365.	4.3	20
326	Thiolated gelatin films: Renaissance of gelatin as sustained intraoral dosage form. European Polymer Journal, 2017, 87, 48-59.	5.4	20
327	Chitosan: The One and Only? Aminated Cellulose as an Innovative Option for Primary Amino Groups Containing Polymers. Biomacromolecules, 2018, 19, 4059-4067.	5.4	20
328	New perspectives of starch: Synthesis and in vitro assessment of novel thiolated mucoadhesive derivatives. International Journal of Pharmaceutics, 2018, 546, 70-77.	5.2	20
329	Reactive keratin derivatives: A promising strategy for covalent binding to hair. Journal of Colloid and Interface Science, 2019, 534, 533-541.	9.4	20
330	Less Reactive Thiol Ligands: Key towards Highly Mucoadhesive Drug Delivery Systems. Polymers, 2020, 12, 1259.	4.5	20
331	Biomembrane Permeability of Peptides: Strategies to Improve Their Mucosal Uptake. Mini-Reviews in Medicinal Chemistry, 2002, 2, 295-305.	2.4	20
332	Thiomer nanoparticles: stabilization via covalent cross-linking. Drug Delivery, 2011, 18, 613-9.	5.7	20
333	Development and <i>In Vitro </i> Evaluation of a Drug Delivery System Based on Chitosan-EDTA BBI Conjugate. Journal of Drug Targeting, 1998, 6, 207-214.	4.4	19
334	Development of a Sustained Release Dosage Form for αâ€Lipoic Acid. I. Design and In Vitro Evaluation. Drug Development and Industrial Pharmacy, 2004, 30, 27-34.	2.0	19
335	Noninvasive delivery systems for peptides and proteins in osteoporosis therapy: a retroperspective. Drug Development and Industrial Pharmacy, 2010, 36, 31-44.	2.0	19
336	Chitosan and Thiolated Chitosan. Advances in Polymer Science, 2011, , 93-110.	0.8	19
337	<i>In situ</i> gelling properties of anionic thiomers. Drug Development and Industrial Pharmacy, 2012, 38, 1479-1485.	2.0	19
338	Thiomers and thiomer-based nanoparticles in protein and DNA drug delivery. Expert Opinion on Drug Delivery, 2012, 9, 1069-1081.	5.0	19
339	Reprint of: Nanocarrier systems for oral drug delivery: Do we really need them?. European Journal of Pharmaceutical Sciences, 2013, 50, 2-7.	4.0	19
340	Enhancing the efficiency of thiomers: Utilizing a highly mucoadhesive polymer as backbone for thiolation and preactivation. European Journal of Pharmaceutical Sciences, 2017, 96, 309-315.	4.0	19
341	In Vitro–in Vivo Correlation of Mucoadhesion Studies on Buccal Mucosa. Molecular Pharmaceutics, 2019, 16, 2719-2727.	4.6	19
342	Mucoadhesive S-protected thiolated cyclodextrin-iodine complexes: a promising strategy to prolong mucosal residence time of iodine. Future Microbiology, 2019, 14, 411-424.	2.0	19

#	Article	IF	Citations
343	In vitro evaluation of the potential of thiomers for the nasal administration of Leu-enkephalin. Amino Acids, 2006, 30, 417-423.	2.7	18
344	Evaluation of the inhibition effect of thiolated poly(acrylates) on vaginal membrane bound aminopeptidase N and release of the model drug LH-RH. Journal of Pharmacy and Pharmacology, 2010, 54, 603-610.	2.4	18
345	Bioadhesive properties of poly(anhydride) nanoparticles coated with different molecular weights chitosan. Journal of Microencapsulation, 2011, 28, 455-463.	2.8	18
346	In vivo evaluation of anionic thiolated polymers as oral delivery systems for efflux pump inhibition. International Journal of Pharmaceutics, 2015, 491, 318-322.	5.2	18
347	Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition. International Journal of Pharmaceutics, 2015, 493, 374-379.	5.2	18
348	2,2′Dithiodinicotinyl ligands: Key to more reactive thiomers. International Journal of Pharmaceutics, 2016, 503, 199-206.	5.2	18
349	Novel in vitro transport method for screening the reversibility of P-glycoprotein inhibitors. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 100, 9-14.	4.3	18
350	Mucoadhesive polymers: Synthesis and in vitro characterization of thiolated poly(vinyl alcohol). International Journal of Pharmaceutics, 2016, 503, 141-149.	5.2	18
351	Natural dendrimers: Synthesis and in vitro characterization of glycogen-cysteamine conjugates. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 168-176.	4.3	18
352	Comprehensive mucoadhesive study of anionic polymers and their derivate. European Polymer Journal, 2017, 93, 314-322.	5.4	18
353	Protease-functionalized mucus penetrating microparticles: In-vivo evidence for their potential. International Journal of Pharmaceutics, 2017, 532, 177-184.	5.2	18
354	Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties. International Journal of Pharmaceutics, 2019, 562, 180-186.	5.2	18
355	Lysozyme-caffeic acid conjugates: possible novel preservatives for dermal formulations. International Journal of Pharmaceutics, 1998, 174, 125-132.	5.2	17
356	Design and evaluation of SEDDS exhibiting high emulsifying properties. Journal of Drug Delivery Science and Technology, 2018, 44, 366-372.	3.0	17
357	The Effect of Counterions in Hydrophobic Ion Pairs on Oral Bioavailability of Exenatide. ACS Biomaterials Science and Engineering, 2020, 6, 5032-5039.	5.2	17
358	Design of nanostructured lipid carriers and solid lipid nanoparticles for enhanced cellular uptake. International Journal of Pharmaceutics, 2022, 624, 122014.	5.2	17
359	Auxiliary Agents for the Peroral Administration of Peptide and Protein Drugs:  Synthesis and Evaluation of Novel Pepstatin Analogues. Journal of Medicinal Chemistry, 1998, 41, 2339-2344.	6.4	16
360	Thiolated polymers: development and evaluation of transdermal delivery systems for progesterone. Pharmaceutical Research, 2001, 18, 211-216.	3.5	16

#	Article	lF	CITATIONS
361	Thiolated polyacrylic acid-modified iron oxide nanoparticles for <i>in vitro </i> labeling and MRI of stem cells. Journal of Drug Targeting, 2011, 19, 562-572.	4.4	16
362	Enzyme-Functionalized PLGA Nanoparticles with Enhanced Mucus Permeation Rate. Nano LIFE, 2014, 04, 1441013.	0.9	16
363	S-protected thiolated hydroxyethyl cellulose (HEC): Novel mucoadhesive excipient with improved stability. Carbohydrate Polymers, 2016, 144, 514-521.	10.2	16
364	Thiomers: Impact of in situ cross-linkers on mucoadhesive properties. European Journal of Pharmaceutical Sciences, 2017, 106, 41-48.	4.0	16
365	Synthesis and Characterization of Thiolated PVP–lodine Complexes: Key to Highly Mucoadhesive Antimicrobial Gels. Molecular Pharmaceutics, 2018, 15, 3527-3534.	4.6	16
366	Mucoadhesive properties of polyacrylates: Structure – Function relationship. International Journal of Adhesion and Adhesives, 2021, 107, 102857.	2.9	16
367	Overcoming the Mucosal Barrier: Tetraether Lipidâ€Stabilized Liposomal Nanocarriers Decorated with Cellâ€Penetrating Peptides Enable Oral Delivery of Vancomycin. Advanced Therapeutics, 2021, 4, 2000247.	3.2	16
368	Synthesis, Development and In Vitro Evaluation of Drug Delivery Systems with Protective Effect against Degradation by Pepsin. Journal of Drug Targeting, 1999, 7, 55-63.	4.4	15
369	Evaluation of In Vitro Enzymatic Degradation of Various Thiomers and Cross-Linked Thiomers. Drug Development and Industrial Pharmacy, 2007, 33, 199-208.	2.0	15
370	Transport Characteristics of a Beta Sheet Breaker Peptide Across Excised Bovine Nasal Mucosa. Drug Development and Industrial Pharmacy, 2007, 33, 71-77.	2.0	15
371	Synthesis and In Vitro Characterization of a Preactivated Thiomer via Polymerization Reaction. Biomacromolecules, 2012, 13, 3054-3063.	5.4	15
372	Vitamin B12 and derivativesâ€"In vitro permeation studies across Caco-2 cell monolayers and freshly excised rat intestinal mucosa. International Journal of Pharmaceutics, 2016, 497, 129-135.	5.2	15
373	About the impact of superassociation of hydrophobic ion pairs on membrane permeability. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 1-8.	4.3	15
374	Solidification of self-emulsifying drug delivery systems (SEDDS): Impact on storage stability of a therapeutic protein. Journal of Colloid and Interface Science, 2021, 584, 684-697.	9.4	15
375	Nanostructured Lipid Carriers (NLCs) for Oral Peptide Drug Delivery: About the Impact of Surface Decoration. Pharmaceutics, 2021, 13, 1312.	4.5	15
376	Controlled Drug Delivery Systems Based on Thiolated Chitosan Microspheres. Drug Development and Industrial Pharmacy, 2005, 31, 557-565.	2.0	14
377	Nasal delivery of antisense oligonucleotides: <i>in vitro</i> evaluation of a thiomer/glutathione microparticulate delivery system. Journal of Drug Targeting, 2010, 18, 303-312.	4.4	14
378	Immobilization of 2-mercaptoethylamine on oxidized chitosan: a substantially mucoadhesive and permeation enhancing polymer. Journal of Materials Chemistry, 2012, 22, 3899.	6.7	14

#	Article	IF	Citations
379	Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide. Drug Development and Industrial Pharmacy, 2014, 40, 1677-1682.	2.0	14
380	Preactivated thiolated pullulan as a versatile excipient for mucosal drug targeting. Carbohydrate Polymers, 2016, 151, 743-751.	10.2	14
381	Combination of SEDDS and Preactivated Thiomer Technology: Incorporation of a Preactivated Thiolated Amphiphilic Polymer into Self-Emulsifying Delivery Systems. Pharmaceutical Research, 2017, 34, 1171-1179.	3.5	14
382	Amikacin-containing self-emulsifying delivery systems via pulmonary administration for treatment of bacterial infections of cystic fibrosis patients. Nanomedicine, 2018, 13, 717-732.	3.3	14
383	Self-emulsifying drug delivery systems: In vivo evaluation of their potential for oral vaccination. Acta Biomaterialia, 2019, 94, 425-434.	8.3	14
384	Self-emulsifying drug delivery systems (SEDDS) – The splendid comeback of an old technology. Advanced Drug Delivery Reviews, 2019, 142, 1-2.	13.7	14
385	In vitro evaluation of a self-emulsifying drug delivery system (SEDDS) for nasal administration of dimenhydrinate. Drug Delivery and Translational Research, 2019, 9, 945-955.	5.8	14
386	Covalently binding mucoadhesive polymers: N-hydroxysuccinimide grafted polyacrylates. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 161-167.	4.3	14
387	Hydrophobic H-bond pairing: A novel approach to improve membrane permeability. International Journal of Pharmaceutics, 2020, 573, 118863.	5.2	14
388	Synthesis and evaluation of sulfosuccinate-based surfactants as counterions for hydrophobic ion pairing. Acta Biomaterialia, 2022, 144, 54-66.	8.3	14
389	Modification of lysozyme with cinnamaldehyde: A strategy for constructing novel preservatives for dermatics. International Journal of Pharmaceutics, 1997, 148, 131-137.	5.2	13
390	Thiomers: Influence of molar mass on in situ gelling properties. International Journal of Pharmaceutics, 2012, 436, 120-126.	5.2	13
391	Thiolated alkyl-modified carbomers: Novel excipients for mucoadhesive emulsions. European Journal of Pharmaceutical Sciences, 2015, 75, 123-130.	4.0	13
392	Thiolated silicone oils as adhesive skin protectants for improved barrier function. International Journal of Cosmetic Science, 2016, 38, 257-265.	2.6	13
393	Evaluation of the impact of multivalent metal ions on the permeation behavior of Dolutegravir sodium. Drug Development and Industrial Pharmacy, 2016, 42, 1118-1126.	2.0	13
394	Self-emulsifying drug delivery systems containing hydrophobic ion pairs of polymyxin B and agaric acid: A decisive strategy for enhanced antimicrobial activity. Journal of Molecular Liquids, 2020, 311, 113298.	4.9	13
395	Polyaminated pullulan, a new biodegradable and cationic pullulan derivative for mucosal drug delivery. Carbohydrate Polymers, 2022, 282, 119143.	10.2	13
396	Emerging technologies to increase gastrointestinal transit times of drug delivery systems. Journal of Controlled Release, 2022, 346, 289-299.	9.9	13

#	Article	IF	Citations
397	Bioadhesion to the intestine by means of E. coli K99-fimbriae:. European Journal of Pharmaceutical Sciences, 1997, 5, 233-242.	4.0	12
398	Simplified Pepstatins:Â Synthesis and Evaluation of N-Terminally Modified Analogues. Journal of Medicinal Chemistry, 1999, 42, 2041-2045.	6.4	12
399	The use of multifunctional polymers for non-invasive peptide and protein application. Expert Opinion on Therapeutic Patents, 2000, 10, 1357-1366.	5.0	12
400	Oral peptide delivery: Are there remarkable effects on drugs through sulfhydryl conjugation?. Journal of Drug Targeting, 2006, 14, 117-125.	4.4	12
401	New-generation efflux pump inhibitors. Expert Review of Clinical Pharmacology, 2008, 1, 429-440.	3.1	12
402	Preparation and evaluation of thiomer nanoparticles via high pressure homogenization. Journal of Microencapsulation, 2010, 27, 487-495.	2.8	12
403	Thiolated polymers: evaluation of their potential as dermoadhesive excipients. Drug Development and Industrial Pharmacy, 2017, 43, 204-212.	2.0	12
404	Composite nanocelluloseâ€based hydrogels with spatially oriented degradation and retarded release of macromolecules. Journal of Biomedical Materials Research - Part A, 2020, 108, 1509-1519.	4.0	12
405	Lysine-Based Biodegradable Surfactants: Increasing the Lipophilicity of Insulin by Hydrophobic Ion Paring. Journal of Pharmaceutical Sciences, 2021, 110, 124-134.	3.3	12
406	Impact of bile salts and a medium chain fatty acid on the physical properties of self-emulsifying drug delivery systems. Drug Development and Industrial Pharmacy, 2021, 47, 22-35.	2.0	12
407	Thiolated polycarbophil/glutathione: Defining its potential as a permeation enhancer for oral drug administration in comparison to sodium caprate. Drug Delivery, 2011, 18, 415-423.	5.7	11
408	Charge changing phosphorylated polymers: Proof of in situ mucoadhesive properties. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 105, 203-208.	4.3	11
409	Can thiolation render a low molecular weight polymer of just 20-kDa mucoadhesive?. Drug Development and Industrial Pharmacy, 2016, 42, 686-693.	2.0	11
410	Improved Intestinal Mucus Permeation of Vancomycin via Incorporation Into Nanocarrier Containing Papain-Palmitate. Journal of Pharmaceutical Sciences, 2019, 108, 3329-3339.	3.3	11
411	<i>N</i> -Hydroxysulfosuccinimide Esters versus Thiomers: A Comparative Study Regarding Mucoadhesiveness. Molecular Pharmaceutics, 2019, 16, 1211-1219.	4.6	11
412	Imine bond formation: A novel concept to incorporate peptide drugs in self-emulsifying drug delivery systems (SEDDS). European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 92-100.	4.3	11
413	In vitro evaluation of intravesical mucoadhesive self-emulsifying drug delivery systems. International Journal of Pharmaceutics, 2019, 564, 180-187.	5.2	11
414	S-Protected thiolated nanostructured lipid carriers exhibiting improved mucoadhesive properties. International Journal of Pharmaceutics, 2020, 587, 119690.	5.2	11

#	Article	lF	Citations
415	Characterization of an amino acid based biodegradable surfactant facilitating the incorporation of DNA into lipophilic delivery systems. Journal of Colloid and Interface Science, 2020, 566, 234-241.	9.4	11
416	Development and In Vitro Evaluation of Stearic Acid Phosphotyrosine Amide as New Excipient for Zeta Potential Changing Self-Emulsifying Drug Delivery Systems. Pharmaceutical Research, 2020, 37, 79.	3.5	11
417	Reactive oxygen species (ROS) in colloidal systems: Are "PEG-free―surfactants the answer?. Journal of Colloid and Interface Science, 2022, 616, 571-583.	9.4	11
418	Peroral Administration of Enzymes: Strategies to Improve the Galenic of Dosage Forms for Trypsin and Bromelain. Drug Development and Industrial Pharmacy, 2000, 26, 115-121.	2.0	10
419	Synthesis and in vitro characterisation of preactivated thiolated gelatin. European Polymer Journal, 2015, 73, 268-277.	5 . 4	10
420	Preactivated thiomers for intranasal delivery of apomorphine: In vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 35-42.	4.3	10
421	Evaluation of thiolated silicone oil as advanced mucoadhesive antifoaming agent. Drug Delivery, 2016, 23, 2711-2719.	5.7	10
422	Storage Stability of Bivalirudin: Hydrophilic Versus Lipophilic Solutions. Journal of Pharmaceutical Sciences, 2017, 106, 1322-1330.	3.3	10
423	Glyceryl ester surfactants: Promising excipients to enhance the cell permeating properties of SEDDS. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 154-161.	4.3	10
424	Entirely S-Protected Thiolated Silicone: A Novel Hydrophobic Mucoadhesive and Skin Adhesive. Journal of Pharmaceutical Sciences, 2019, 108, 2887-2894.	3.3	10
425	Peroral Polypeptide Delivery. Arzneimittelforschung, 1999, 49, 799-803.	0.4	9
426	Near infrared spectroscopy compared to liquid chromatography coupled to mass spectrometry and capillary electrophoresis as a detection tool for peptide reaction monitoring. Amino Acids, 2008, 34, 605-616.	2.7	9
427	Design and In Vivo Evaluation of a Patch System Based on Thiolated Polymers. Journal of Pharmaceutical Sciences, 2009, 98, 620-627.	3.3	9
428	Storage stability of proteins in a liquid-based formulation: Liquid vs. solid self-emulsifying drug delivery. International Journal of Pharmaceutics, 2020, 590, 119918.	5.2	9
429	Replacing PEG-surfactants in self-emulsifying drug delivery systems: Surfactants with polyhydroxy head groups for advanced cytosolic drug delivery. International Journal of Pharmaceutics, 2022, 618, 121633.	5.2	9
430	Digestion of lipid excipients and lipid-based nanocarriers by pancreatic lipase and pancreatin. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 176, 32-42.	4.3	9
431	Self-emulsifying drug delivery systems comprising chlorhexidine and alkyl-EDTA: A novel approach for augmented antimicrobial activity. Journal of Molecular Liquids, 2019, 295, 111649.	4.9	8
432	Lipophilic Arginine Esters: The Gateway to Preservatives without Side Effects. Molecular Pharmaceutics, 2020, 17, 3129-3139.	4.6	8

#	Article	IF	Citations
433	Strategies for improved hair binding: Keratin fractions and the impact of cationic substructures. International Journal of Biological Macromolecules, 2020, 160, 201-211.	7. 5	8
434	Synthesis and in vitro characterization of a preactivated thiolated acrylic acid/acrylamide-methylpropane sulfonic acid copolymer as a mucoadhesive sprayable polymer. International Journal of Pharmaceutics, 2020, 583, 119371.	5.2	8
435	Impact of Surfactants on Skin Penetration of Dexpanthenol. Current Drug Delivery, 2018, 15, 351-356.	1.6	8
436	Design and Evaluation of a New Gastrointestinal Mucoadhesive Patch System Containing Chitosan-Glutathione. Drug Development and Industrial Pharmacy, 2007, 33, 1289-1296.	2.0	7
437	Intestinal enzymatic metabolism of drugs. Journal of Pharmacy and Pharmacology, 2011, 63, 392-399.	2.4	7
438	Entirely S-protected silicone oil as second generation mucoadhesive agent. European Polymer Journal, 2016, 76, 53-62.	5.4	7
439	Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalis peruviana. Journal of Drug Delivery Science and Technology, 2021, 66, 102797.	3.0	7
440	Targeted Self-Emulsifying Drug Delivery Systems to Restore Docetaxel Sensitivity in Resistant Tumors. Pharmaceutics, 2022, 14, 292.	4.5	7
441	Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles. Pharmaceutics, 2022, 14, 803.	4.5	7
442	Inhibitory effect of emulsifiers in sedds on protease activity: Just an illusion?. International Journal of Pharmaceutics, 2017, 526, 23-30.	5.2	6
443	Anhydrous thiomers: Strategy for enhanced mucoadhesion. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 273-281.	4.3	6
444	In vitro evaluation of tumor targeting ability of a parenteral enoxaparin-coated self-emulsifying drug delivery system. Journal of Drug Delivery Science and Technology, 2019, 53, 101144.	3.0	6
445	Self-emulsifying drug delivery systems: About the fate of hydrophobic ion pairs on a phospholipid bilayer. Journal of Molecular Liquids, 2020, 312, 113382.	4.9	6
446	Permeation studies on freshly excised rat gastric mucosa: influence of pH. Drug Development and Industrial Pharmacy, 2011, 37, 518-525.	2.0	5
447	Preactivated silicone oil as potential long-term vitreous replacement with nonemulsifying properties. , 2017, 105, 551-559.		5
448	Comparison of mucoadhesive and cohesive features of poly(acrylic acid)-conjugates respective their molecular mass. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 149-156.	4.3	5
449	Evaluation of dermal adhesive formulations for topical application. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 124, 89-94.	4.3	5
450	Mucolytic self-emulsifying drug delivery systems (SEDDS) containing a hydrophobic ion-pair of proteinase. European Journal of Pharmaceutical Sciences, 2021, 162, 105658.	4.0	5

#	Article	IF	Citations
451	Preparation and Evaluation of Charge Reversal Solid Lipid Nanoparticles. Journal of Pharmaceutical Sciences, 2022, 111, 2270-2279.	3.3	5
452	SEDDS-loaded mucoadhesive fiber patches for advanced oromucosal delivery of poorly soluble drugs. Journal of Controlled Release, 2022, 348, 692-705.	9.9	5
453	Development of nanoparticulate drug delivery systems based on thiolated poly(acrylic acid). Journal of Microencapsulation, 2009, 26, 187-194.	2.8	4
454	Gastroretentive particles formulated with thiomers: development andin vitroevaluation. Journal of Drug Targeting, 2010, 18, 362-372.	4.4	4
455	A comprehensive in vitro and in vivo evaluation of thiolated matrix tablets as a gastroretentive delivery system. Drug Delivery, 2011, 18, 405-414.	5.7	4
456	Synthesis and in vitro characterization of a novel PAA–ATP conjugate. Drug Development and Industrial Pharmacy, 2011, 37, 300-309.	2.0	4
457	Assembly and in vitro characterization of thiomeric nanoparticles. Drug Development and Industrial Pharmacy, 2016, 42, 730-736.	2.0	4
458	Development and In Vitro Characterization of Transferrin-Decorated Nanoemulsion Utilizing Hydrophobic Ion Pairing for Targeted Cellular Uptake. Journal of Pharmaceutical Innovation, 2022, 17, 690-700.	2.4	4
459	Development and In Vitro Evaluation of a Mucoadhesive Oral Deliverv System for Antisense Oliaonucleotides. Scientia Pharmaceutica, 2003, 71, 165-177.	2.0	3
460	The Use of Auxiliary Agents to Improve the Mucosal Uptake of Peptides. Medicinal Chemistry Reviews Online, 2004, 1, 1-10.	0.1	3
461	Imine bond formation as a tool for incorporation of amikacin in self-emulsifying drug delivery systems (SEDDS). European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 82-91.	4.3	3
462	Charge-reversal nanoemulsions: A systematic investigation of phosphorylated PEG-based surfactants. International Journal of Pharmaceutics, 2022, 613, 121438.	5.2	3
463	Development of a dosage form for accelerated release. International Journal of Pharmaceutics, 2014, 471, 189-196.	5.2	2
464	Evaluation of peptide drug delivery via skin barrier-impact of permeation enhancers. Journal of Drug Delivery Science and Technology, 2017, 41, 191-196.	3.0	2
465	Grafting of wool fibers through disulfide bonds: An advanced application of S-protected thiolated starch. International Journal of Biological Macromolecules, 2020, 147, 473-481.	7. 5	2
466	Mucoadhesive Polymers: Gateway to Innovative Drug Delivery. , 2021, , 351-383.		2
467	Mucoadhesive Polymers. , 2013, , 193-220.		2
468	Thiolated Pectins: <i>In vitro</i> and <i>Ex vivo</i> Evaluation of Three Generations of Thiomers. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	Citations
469	Nano- and Microparticles in Oral Delivery of Macromolecular Drugs. , 2009, , 153-167.		1
470	Pharmaceutical Non-Viral Formulations for Gene Vaccines. , 2012, , 109-125.		1
471	Oral delivery of therapeutic peptides: Barriers and strategies to overcome them. Journal of Drug Targeting, 2006, 14, 107-108.	4.4	0
472	Relation Between Scaffold Size and Membrane Bound Enzyme Caused Degradation of Two Novel Cystine Knot Microproteins. Letters in Drug Design and Discovery, 2007, 4, 33-36.	0.7	0
473	Thiolated PVP–Amphotericin B Complexes: An Innovative Approach toward Highly Mucoadhesive Gels for Mucosal Leishmaniasis Treatment. Biomacromolecules, 2020, 21, 3658-3667.	5.4	O
474	Mucoadhesive Polymers: Basics, Strategies, and Trends. , 0, , 4897-4916.		0
475	Mucoadhesive Polymers: Basics, Strategies, and Trends. , 2017, , 941-960.		0