Xiaomin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9185876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave gas sensor for detection of ammonia at room-temperature. Sensors and Actuators B: Chemical, 2022, 350, 130854.	4.0	24
2	A distyrylbenzene-based fluorescent probe with high photostability and large Stokes shift for STED nanoscopy imaging of cellular lipid droplets. Sensors and Actuators B: Chemical, 2022, 353, 131000.	4.0	16
3	Interfacial Stressâ€Modulated Mechanosensitive Upconversion Luminescence of NaErF ₄ Based Heteroepitaxial Core–Shell Nanoparticles. Advanced Optical Materials, 2022, 10, 2101702.	3.6	8
4	Gold-Trisoctahedra-Coated Capillary-Based SERS Platform for Microsampling and Sensitive Detection of Trace Fentanyl. Analytical Chemistry, 2022, 94, 4850-4858.	3.2	23
5	Self-assembled multiprotein nanostructures with enhanced stability and signal amplification capability for sensitive fluorogenic immunoassays. Biosensors and Bioelectronics, 2022, 206, 114132.	5.3	6
6	Bioinspired laccase-mimicking catalyst for on-site monitoring of thiram in paper-based colorimetric platform. Biosensors and Bioelectronics, 2022, 207, 114199.	5.3	18
7	Photonic Crystal Effects on Upconversion Enhancement of LiErF ₄ :0.5%Tm ³⁺ @LiYF ₄ for Noncontact Cholesterol Detection. ACS Applied Materials & Interfaces, 2022, 14, 428-438.	4.0	8
8	Embedding Proteins within Spatially Controlled Hierarchical Nanoarchitectures for Ultrasensitive Immunoassay. Analytical Chemistry, 2022, 94, 6271-6280.	3.2	6
9	New Generation of Photosensitizers Based on Inorganic Nanomaterials. Methods in Molecular Biology, 2022, 2451, 213-244.	0.4	2
10	Ti ₃ C ₂ MXene Nanosheets Functionalized with NaErF ₄ :0.5%Tm@NaLuF ₄ Nanoparticles for Dual-Modal Near-Infrared IIb/Magnetic Resonance Imaging-Guided Tumor Hyperthermia. ACS Applied Nano Materials, 2022, 5, 8142-8153.	2.4	15
11	Stimulated Emission Depletion (STED) Super-Resolution Imaging with an Advanced Organic Fluorescent Probe: Visualizing the Cellular Lipid Droplets at the Unprecedented Nanoscale Resolution. , 2021, 3, 516-524.		22
12	Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor. Biosensors and Bioelectronics, 2021, 190, 113421.	5.3	113
13	A near-infrared light triggered fluormetric biosensor for sensitive detection of acetylcholinesterase activity based on NaErF4: 0.5Â% Ho3+@NaYF4 upconversion nano-probe. Talanta, 2021, 235, 122784.	2.9	9
14	Background-free sensing platform for on-site detection of carbamate pesticide through upconversion nanoparticles-based hydrogel suit. Biosensors and Bioelectronics, 2021, 194, 113598.	5.3	40
15	Er ³⁺ self-sensitized nanoprobes with enhanced 1525 nm downshifting emission for NIR-IIb <i>in vivo</i> bio-imaging. Journal of Materials Chemistry B, 2021, 9, 2899-2908.	2.9	32
16	STED Nanoscopy Imaging of Cellular Lipid Droplets Employing a Superior Organic Fluorescent Probe. Analytical Chemistry, 2021, 93, 14784-14791.	3.2	23
17	Mitochondria-Immobilized Unimolecular Fluorescent Probe for Multiplexing Imaging of Living Cancer Cells. Analytical Chemistry, 2020, 92, 11103-11110.	3.2	23
18	Construction of self-sensitized LiErF4: 0.5% Tm3+@LiYF4 upconversion nanoprobe for trace water sensing. Nano Research, 2020, 13, 2803-2811.	5.8	24

Xiaomin Liu

#	Article	IF	CITATIONS
19	Lab in hydrogel portable kit: On-site monitoring of oxalate. Biosensors and Bioelectronics, 2020, 167, 112457.	5.3	26
20	A Redâ€Emissive Fluorescent Probe with a Compact Singleâ€Benzeneâ€Based Skeleton for Cell Imaging of Lipid Droplets. Advanced Optical Materials, 2020, 8, 1902123.	3.6	40
21	Design of Red Emissive Carbon Dots: Robust Performance for Analytical Applications in Pesticide Monitoring. Analytical Chemistry, 2020, 92, 3198-3205.	3.2	129
22	Fluorescent hydrogel test kit coordination with smartphone: Robust performance for on-site dimethoate analysis. Biosensors and Bioelectronics, 2019, 145, 111706.	5.3	35
23	Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles <i>via</i> a dye sensitization strategy. Journal of Materials Chemistry C, 2019, 7, 8607-8615.	2.7	23
24	Near Infrared Light Sensitive Ultraviolet–Blue Nanophotoswitch for Imaging-Guided "Off–On― Therapy. ACS Nano, 2018, 12, 3217-3225.	7.3	113
25	Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures. Angewandte Chemie, 2018, 130, 3108-3112.	1.6	24
26	Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 3054-3058.	7.2	97
27	Titelbild: Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures (Angew. Chem. 12/2018). Angewandte Chemie, 2018, 130, 3031-3031.	1.6	0
28	High Brightness and Enhanced Stability of CsPbBr ₃ â€Based Perovskite Lightâ€Emitting Diodes by Morphology and Interface Engineering. Advanced Optical Materials, 2018, 6, 1801245.	3.6	57
29	Ultrastrong Absorption Meets Ultraweak Absorption: Unraveling the Energy-Dissipative Routes for Dye-Sensitized Upconversion Luminescence. Journal of Physical Chemistry Letters, 2018, 9, 4625-4631.	2.1	48
30	Sub-10 nm Sr ₂ LuF ₇ :Yb/Er@Sr ₂ GdF ₇ @SrF ₂ Up-Conversion Nanocrystals for Up-Conversion Luminescence–Magnetic Resonance–Computed Tomography Trimodal Bioimaging. ACS Applied Materials & Interfaces, 2017, 9, 5748-5756.	4.0	25
31	Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale, 2017, 9, 7941-7946.	2.8	140
32	Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers. Scientific Reports, 2017, 7, 45633.	1.6	26
33	A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood. Biosensors and Bioelectronics, 2017, 92, 517-522.	5.3	38
34	Bcl-2 inhibitor uploaded upconversion nanophotosensitizers to overcome the photodynamic therapy resistance of cancer through adjuvant intervention strategy. Biomaterials, 2017, 144, 73-83.	5.7	38
35	Dependence between cytotoxicity and dynamic subcellular localization of up-conversion nanoparticles with different surface charges. RSC Advances, 2017, 7, 33502-33509.	1.7	18
36	One-step in situ solid-substrate-based whole blood immunoassay based on FRET between upconversion and gold nanoparticles. Biosensors and Bioelectronics, 2017, 92, 335-341.	5.3	31

Χιαομιν Liu

#	Article	IF	CITATIONS
37	Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe. Scientific Reports, 2016, 6, 38617.	1.6	46
38	Correction: In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform. Nanoscale, 2016, 8, 15358-15358.	2.8	1
39	A facile and general route to synthesize silica-coated SERS tags with the enhanced signal intensity. Scientific Reports, 2015, 5, 14934.	1.6	21
40	ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics. Experimental Cell Research, 2015, 335, 68-81.	1.2	31
41	Interplay between Static and Dynamic Energy Transfer in Biofunctional Upconversion Nanoplatforms. Journal of Physical Chemistry Letters, 2015, 6, 2518-2523.	2.1	39
42	Near infrared light-driven water oxidation in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer. Chemical Communications, 2015, 51, 13008-13011.	2.2	7
43	In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform. Nanoscale, 2015, 7, 14914-14923.	2.8	53
44	An upconversion nanoparticle – Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy. Biomaterials, 2014, 35, 4146-4156.	5.7	198
45	A versatile synthesis route for metal@SiO2 core–shell nanoparticles using 11-mercaptoundecanoic acid as primer. Journal of Materials Chemistry C, 2013, 1, 6355.	2.7	20
46	Separately doped upconversion-C ₆₀ nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chemical Communications, 2013, 49, 3224-3226.	2.2	78
47	Facile synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell upconversion nanoparticles via successive ion layer adsorption and one-pot reaction technique. CrystEngComm, 2013, 15, 4765.	1.3	20
48	The real role of active-shell in enhancing the luminescence of lanthanides doped nanomaterials. Applied Physics Letters, 2013, 102, .	1.5	8
49	Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications. Chemical Communications, 2011, 47, 11957.	2.2	86
50	A Facile Approach to Fabrication of Hexagonalâ€Phase NaYF ₄ :Yb ³⁺ , Er ³⁺ Hollow Nanospheres: Formation Mechanism and Upconversion Luminescence. European Journal of Inorganic Chemistry, 2010, 2010, 1813-1819.	1.0	32
51	Shell-dependent electroluminescence from colloidal CdSe quantum dots in multilayer light-emitting diodes. Journal of Applied Physics, 2009, 105, .	1.1	39
52	Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors. Chemical Communications, 2009, , 6628.	2.2	97