
ÃđÃ;m Dénes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/918584/publications.pdf Version: 2024-02-01

ÃĐÃ:M DÃONES

#	Article	IF	CITATIONS
1	The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson's disease: Signalling pathway and novel therapeutic targets. Pharmacological Research, 2022, 176, 106045.	7.1	14
2	The NKCC1 ion transporter modulates microglial phenotype and inflammatory response to brain injury in a cell-autonomous manner. PLoS Biology, 2022, 20, e3001526.	5.6	21
3	Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions. Journal of Experimental Medicine, 2022, 219, .	8.5	94
4	Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions. Neuron, 2021, 109, 222-240.	8.1	113
5	MO1016MULTIPLE-ORGAN DAMAGE FOLLOWING PERINATAL ASPHYXIA IN RAT MODEL. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
6	Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. Journal of Experimental Medicine, 2021, 218, .	8.5	26
7	Formation of a protein corona on the surface of extracellular vesicles in blood plasma. Journal of Extracellular Vesicles, 2021, 10, e12140.	12.2	150
8	Leptin coordinates efferent sympathetic outflow to the white adipose tissue through the midbrain centrally-projecting Edinger-Westphal nucleus in male rats. Neuropharmacology, 2021, 205, 108898.	4.1	6
9	Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science, 2020, 367, 528-537.	12.6	381
10	Microglia alter the threshold of spreading depolarization and related potassium uptake in the mouse brain. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S67-S80.	4.3	29
11	New Insights into Microglia–Neuron Interactions: A Neuron's Perspective. Neuroscience, 2019, 405, 103-117.	2.3	77
12	Editorial for the Special Issue: Microglia-Neuron interactions in health and disease - novel perspectives for translational research. Neuroscience, 2019, 405, 1-2.	2.3	2
13	Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1–induced mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13067-13076.	7.1	66
14	Hypoglycemia-activated Hypothalamic Microglia Impairs Glucose Counterregulatory Responses. Scientific Reports, 2019, 9, 6224.	3.3	34
15	Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathologica, 2019, 137, 321-341.	7.7	177
16	Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain, Behavior, and Immunity, 2019, 76, 126-138.	4.1	48
17	Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer. British Journal of Cancer, 2019, 120, 207-217.	6.4	62
18	Chronic Amyloid Î ² Oligomer Infusion Evokes Sustained Inflammation and Microglial Changes in the Rat Hippocampus via NLRP3. Neuroscience, 2019, 405, 35-46.	2.3	26

ÃĐÃ:M DéNES

#	Article	IF	CITATIONS
19	Neutrophil infiltration to the brain is plateletâ€dependent, and is reversed by blockade of platelet GPlb <i>α</i> . Immunology, 2018, 154, 322-328.	4.4	36
20	Mannose-Binding Lectin Drives Platelet Inflammatory Phenotype and Vascular Damage After Cerebral Ischemia in Mice via IL (Interleukin)-1α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2678-2690.	2.4	34
21	Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathologica, 2018, 136, 461-482.	7.7	108
22	Co-transmission of acetylcholine and GABA regulates hippocampal states. Nature Communications, 2018, 9, 2848.	12.8	112
23	Evaluation of Brain Nuclear Medicine Imaging Tracers in a Murine Model of Sepsis-Associated Encephalopathy. Molecular Imaging and Biology, 2018, 20, 952-962.	2.6	23
24	The Role of Interleukin-10 in Mediating the Effect of Immune Challenge on Mouse Gonadotropin-Releasing Hormone Neurons <i>In Vivo</i> . ENeuro, 2018, 5, ENEURO.0211-18.2018.	1.9	7
25	Mitochondrial Ultrastructure Is Coupled to Synaptic Performance at Axonal Release Sites. ENeuro, 2018, 5, ENEURO.0390-17.2018.	1.9	70
26	Ïf 1-Receptor Agonism Protects against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 152-165.	6.1	37
27	Inflammasomes link vascular disease with neuroinflammation and brain disorders. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1668-1685.	4.3	129
28	Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nature Communications, 2016, 7, 11499.	12.8	452
29	A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 596-605.	4.3	61
30	Emerging roles of the acute phase protein pentraxin-3 during central nervous system disorders. Journal of Neuroimmunology, 2016, 292, 27-33.	2.3	21
31	Interleukinâ€1α and brain inflammation. IUBMB Life, 2015, 67, 323-330.	3.4	36
32	Requirement for interleukinâ€1 to drive brain inflammation reveals tissueâ€specific mechanisms of innate immunity. European Journal of Immunology, 2015, 45, 525-530.	2.9	33
33	A Novel SPECT-Based Approach Reveals Early Mechanisms of Central and Peripheral Inflammation after Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1921-1929.	4.3	29
34	Delayed Reperfusion Deficits after Experimental Stroke Account for Increased Pathophysiology. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 277-284.	4.3	37
35	Anti-HSV1 activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer's disease. International Journal of Biological Macromolecules, 2015, 74, 530-540.	7.5	52
36	AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4050-4055.	7.1	211

ÃĐÃ:M DéNES

#	Article	IF	CITATIONS
37	Brain-immune interactions in health and disease. Frontiers in Neuroscience, 2014, 8, 382.	2.8	7
38	<i>Streptococcus pneumoniae</i> worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ibα. Annals of Neurology, 2014, 75, 670-683.	5.3	50
39	The Acute-Phase Protein PTX3 is an Essential Mediator of Glial Scar Formation and Resolution of Brain Edema after Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 480-488.	4.3	73
40	Recombinant Tissue Plasminogen Activator Enhances Microglial Cell Recruitment after Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 802-812.	4.3	31
41	The fractalkine/Cx3CR1 system is implicated in the development of metabolic visceral adipose tissue inflammation in obesity. Brain, Behavior, and Immunity, 2014, 38, 25-35.	4.1	38
42	Systemic immune activation shapes stroke outcome. Molecular and Cellular Neurosciences, 2013, 53, 14-25.	2.2	67
43	Loss of substance P and inflammation precede delayed neurodegeneration in the substantia nigra after cerebral ischemia. Brain, Behavior, and Immunity, 2013, 29, 51-61.	4.1	56
44	The Immune System in Stroke: Clinical Challenges and Their Translation to Experimental Research. Journal of NeuroImmune Pharmacology, 2013, 8, 867-887.	4.1	40
45	Central and haematopoietic interleukin-1 both contribute to ischaemic brain injury in mice. DMM Disease Models and Mechanisms, 2013, 6, 1043-8.	2.4	35
46	Surgical manipulation compromises leukocyte mobilization responses and inflammation after experimental cerebral ischemia in mice. Frontiers in Neuroscience, 2013, 7, 271.	2.8	11
47	NLRP3-Inflammasome Activating DAMPs Stimulate an Inflammatory Response in Glia in the Absence of Priming Which Contributes to Brain Inflammation after Injury. Frontiers in Immunology, 2012, 3, 288.	4.8	161
48	Interleukinâ€1 Mediates Neuroinflammatory Changes Associated With Dietâ€Induced Atherosclerosis. Journal of the American Heart Association, 2012, 1, e002006.	3.7	38
49	Neutrophil Cerebrovascular Transmigration Triggers Rapid Neurotoxicity through Release of Proteases Associated with Decondensed DNA. Journal of Immunology, 2012, 189, 381-392.	0.8	174
50	Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain, Behavior, and Immunity, 2011, 25, 1113-1122.	4.1	173
51	Experimental Stroke-Induced Changes in the Bone Marrow Reveal Complex Regulation of Leukocyte Responses. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1036-1050.	4.3	61
52	Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size. Journal of Neuroinflammation, 2011, 8, 164.	7.2	140
53	Interleukin-1 and Stroke: Biomarker, Harbinger of Damage, and Therapeutic Target. Cerebrovascular Diseases, 2011, 32, 517-527.	1.7	103
54	Platelet interleukin- $1\hat{l}$ + drives cerebrovascular inflammation. Blood, 2010, 115, 3632-3639.	1.4	145

ÃĐÃ; M DéNES

#	Article	IF	CITATIONS
55	Chronic Systemic Infection Exacerbates Ischemic Brain Damage via a CCL5 (Regulated on Activation,) Tj ETQq1 1 Neuroscience, 2010, 30, 10086-10095.	0.784314 3.6	f rgBT /Over 119
56	Viral Epidemics in a Cell Culture: Novel High Resolution Data and Their Interpretation by a Percolation Theory Based Model. PLoS ONE, 2010, 5, e15571.	2.5	15
57	Role of CX3CR1 (Fractalkine Receptor) in Brain Damage and Inflammation Induced by Focal Cerebral Ischemia in Mouse. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1707-1721.	4.3	248
58	Proliferating Resident Microglia after Focal Cerebral Ischaemia in Mice. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1941-1953.	4.3	301
59	Attenuated pseudorabies virus-evoked rapid innate immune response in the rat brain. Journal of Neuroimmunology, 2006, 180, 88-103.	2.3	15
60	Novel tracing paradigms—genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Progress in Neurobiology, 2004, 72, 417-445.	5.7	77
61	Microglia Monitor and Protect Neuronal Function Via Specialized Somatic Purinergic Junctions in an Activity-Dependent Manner. SSRN Electronic Journal, 0, , .	0.4	О