Katherine M Hannan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9185802/publications.pdf

Version: 2024-02-01

59 papers 3,654 citations

32 h-index 57 g-index

64 all docs 64
docs citations

64 times ranked 5400 citing authors

#	Article	IF	CITATIONS
1	mTOR-Dependent Regulation of Ribosomal Gene Transcription Requires S6K1 and Is Mediated by Phosphorylation of the Carboxy-Terminal Activation Domain of the Nucleolar Transcription Factor UBFâ€. Molecular and Cellular Biology, 2003, 23, 8862-8877.	1.1	390
2	The nucleolus: an emerging target for cancer therapy. Trends in Molecular Medicine, 2013, 19, 643-654.	3.5	205
3	Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors, 2007, 25, 209-226.	0.5	204
4	Targeting the nucleolus for cancer intervention. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 802-816.	1.8	198
5	UBF levels determine the number of active ribosomal RNA genes in mammals. Journal of Cell Biology, 2008, 183, 1259-1274.	2.3	171
6	MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 2004, 23, 3325-3335.	3.5	166
7	AKT Promotes rRNA Synthesis and Cooperates with c-MYC to Stimulate Ribosome Biogenesis in Cancer. Science Signaling, 2011, 4, ra56.	1.6	126
8	Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells, 2020, 9, 266.	1.8	121
9	The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 821-829.	0.9	105
10	Combination Therapy Targeting Ribosome Biogenesis and mRNA Translation Synergistically Extends Survival in MYC-Driven Lymphoma. Cancer Discovery, 2016, 6, 59-70.	7.7	105
11	Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget, 2016, 7, 49800-49818.	0.8	93
12	Translational control of c-MYC by rapamycin promotes terminal myeloid differentiation. Blood, 2008, 112, 2305-2317.	0.6	92
13	CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nature Communications, 2020, 11, 2641.	5.8	90
14	Direct Identification of Tyrosine 474 as a Regulatory Phosphorylation Site for the Akt Protein Kinase. Journal of Biological Chemistry, 2002, 277, 38021-38028.	1.6	88
15	A Specific Role for AKT3 in the Genesis of Ovarian Cancer through Modulation of G2-M Phase Transition. Cancer Research, 2006, 66, 11718-11725.	0.4	85
16	RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene, 2000, 19, 3487-3497.	2.6	81
17	Regulation of rDNA transcription in response to growth factors, nutrients and energy. Gene, 2015, 556, 27-34.	1.0	79
18	Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood, 2017, 129, 2882-2895.	0.6	74

#	Article	IF	CITATIONS
19	Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis. PLoS Genetics, 2013, 9, e1003279.	1.5	73
20	Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors. European Journal of Cancer, 2013, 49, 3936-3944.	1.3	72
21	The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35. Nature Communications, 2019, 10, 5026.	5.8	67
22	Diabetes-Induced Vascular Hypertrophy Is Accompanied by Activation of Na ⁺ -H ⁺ Exchange and Prevented by Na ⁺ -H ⁺ Exchange Inhibition. Circulation Research, 2000, 87, 1133-1140.	2.0	63
23	Regulation of ribosomal DNA transcription by insulin. American Journal of Physiology - Cell Physiology, 1998, 275, C130-C138.	2.1	61
24	Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas. Blood, 2013, 121, 2964-2974.	0.6	59
25	The mTORC1 Inhibitor Everolimus Prevents and Treats Eμ- <i>Myc</i> Lymphoma by Restoring Oncogene-Induced Senescence. Cancer Discovery, 2013, 3, 82-95.	7.7	58
26	New Roles for the Nucleolus in Health and Disease. BioEssays, 2018, 40, e1700233.	1.2	53
27	Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an initial calcium-dependent priming event involving formation of a high-molecular-mass signalling complex. Biochemical Journal, 2003, 370, 469-477.	1.7	52
28	Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. International Journal of Biochemistry and Cell Biology, 2009, 41, 2403-2412.	1.2	52
29	A functional genetic screen defines the AKT-induced senescence signaling network. Cell Death and Differentiation, 2020, 27, 725-741.	5.0	40
30	Troglitazone, but not rosiglitazone, inhibits Na/H exchange activity and proliferation of macrovascular endothelial cells. Journal of Diabetes and Its Complications, 2001, 15, 120-127.	1.2	39
31	Troglitazone Stimulates Repair of the Endothelium and Inhibits Neointimal Formation in Denuded Rat Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 762-768.	1.1	36
32	PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth. BMC Molecular and Cell Biology, 2020, 21, 24.	1.0	36
33	Signaling to the ribosome in cancer—It is more than just mTORC1. IUBMB Life, 2011, 63, 79-85.	1.5	35
34	Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005432.	1.3	34
35	Determination of the Exact Molecular Requirements for Type 1 Angiotensin Receptor Epidermal Growth Factor Receptor Transactivation and Cardiomyocyte Hypertrophy. Hypertension, 2011, 57, 973-980.	1.3	27
36	The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. British Journal of Cancer, 2021, 124, 616-627.	2.9	26

3

#	Article	IF	Citations
37	The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer. International Journal of Molecular Sciences, 2017, 18, 210.	1.8	20
38	Mechanisms regulating the vascular smooth muscle Na/H exchanger (NHE-1) in diabetes. Biochemistry and Cell Biology, 1998, 76, 751-759.	0.9	19
39	<scp>AKT</scp> signalling is required for ribosomal <scp>RNA</scp> synthesis and progression of <scp>E</scp> 1¼â€ <i>Myc </i> <scp>B</scp> â€cell lymphoma <i>inÂvivo</i> <febs 2013,="" 280,="" 5307-531<="" journal,="" td=""><td>.6^{2.2}</td><td>19</td></febs>	.6 ^{2.2}	19
40	A novel small molecule that kills a subset of MLL-rearranged leukemia cells by inducing mitochondrial dysfunction. Oncogene, 2019, 38, 3824-3842.	2.6	17
41	Reprogrammed <scp>mRNA</scp> translation drives resistance to therapeutic targeting of ribosome biogenesis. EMBO Journal, 2020, 39, e105111.	3.5	17
42	Harnessing the self-assembly of peptides for the targeted delivery of anti-cancer agents. Materials Horizons, 2020, 7, 1996-2010.	6.4	17
43	A phospho-proteomic screen identifies novel S6K1 and mTORC1 substrates revealing additional complexity in the signaling network regulating cell growth. Cellular Signalling, 2011, 23, 1338-1347.	1.7	16
44	Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining <i>In Vivo </i> AKT Isoform Substrate Specificity. Enzyme Research, 2011, 2011, 1-18.	1.8	16
45	Ro 31-6045, the inactive analogue of the protein kinase C inhibitor Ro 31-8220, blocks in vivo activation of p70s6k/p85s6k: implications for the analysis of S6K signalling. FEBS Letters, 2002, 519, 135-140.	1.3	15
46	S6 Kinase is essential for MYC-dependent rDNA transcription in Drosophila. Cellular Signalling, 2015, 27, 2045-2053.	1.7	15
47	rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461. Frontiers in Cell and Developmental Biology, 2020, 8, 568.	1.8	15
48	Suppression of ABCE1-Mediated mRNA Translation Limits N-MYC–Driven Cancer Progression. Cancer Research, 2020, 80, 3706-3718.	0.4	15
49	Cell cycle and growth stimuli regulate different steps of RNA polymerase I transcription. Gene, 2017, 612, 36-48.	1.0	14
50	The Ribosomal Gene Lociâ€"The Power behind the Throne. Genes, 2021, 12, 763.	1.0	14
51	Advanced pancreatic ductal adenocarcinoma - Complexities of treatment and emerging therapeutic options. World Journal of Gastroenterology, 2017, 23, 2276.	1.4	13
52	Functional microRNA targetome undergoes degeneration-induced shift in the retina. Molecular Neurodegeneration, 2021, 16, 60.	4.4	10
53	Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription. Oncotarget, 2016, 7, 48887-48904.	0.8	8
54	Combining High-Content Imaging and Phenotypic Classification Analysis of Senescence-Associated Beta-Galactosidase Staining to Identify Regulators of Oncogene-Induced Senescence. Assay and Drug Development Technologies, 2016, 14, 416-428.	0.6	8

#	Article	IF	CITATIONS
55	High-Content Imaging Approaches to Quantitate Stress-Induced Changes in Nucleolar Morphology. Assay and Drug Development Technologies, 2018, 16, 320-332.	0.6	7
56	Too much or too little. Cell Cycle, 2012, 11, 3147-3148.	1.3	4
57	The therapeutic potential of RNA Polymerase I transcription inhibitor, CX-5461, in uterine leiomyosarcoma. Investigational New Drugs, 2022, 40, 529-536.	1.2	3
58	MODULATION OF RNA POLYMERASE I TRANSCRIPTION IN NORMAL AND MALIGNANT HAEMATOPOIESIS. Experimental Hematology, 2019, 76, S65-S66.	0.2	0
59	The Synthesis and Biological Evaluation of Some C-9 and C-10 Substituted Derivatives of the RNA Polymerase I Transcription Inhibitor CX-5461. Australian Journal of Chemistry, 2021, 74, 540.	0.5	0