Menachem Elimelech

List of Publications by Citations

Source: https://exaly.com/author-pdf/9185498/menachem-elimelech-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

515	87,475	151	284
papers	citations	h-index	g-index
535	98,297	10.8	8.84
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
515	Science and technology for water purification in the coming decades. <i>Nature</i> , 2008 , 452, 301-10	50.4	5633
514	The future of seawater desalination: energy, technology, and the environment. <i>Science</i> , 2011 , 333, 712	-733.3	3767
513	Forward osmosis: Principles, applications, and recent developments. <i>Journal of Membrane Science</i> , 2006 , 281, 70-87	9.6	1819
512	Materials for next-generation desalination and water purification membranes. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	1380
511	Maximizing the right stuff: The trade-off between membrane permeability and selectivity. <i>Science</i> , 2017 , 356,	33.3	1187
510	Environmental applications of carbon-based nanomaterials. <i>Environmental Science & Environmental Scien</i>	10.3	1154
509	Environmental applications of graphene-based nanomaterials. <i>Chemical Society Reviews</i> , 2015 , 44, 586	1-98 .5	1022
508	Single-walled carbon nanotubes exhibit strong antimicrobial activity. <i>Langmuir</i> , 2007 , 23, 8670-3	4	1014
507	Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. <i>Journal of Membrane Science</i> , 1997 , 132, 159-181	9.6	1011
506	Membrane-based processes for sustainable power generation using water. <i>Nature</i> , 2012 , 488, 313-9	50.4	969
505	Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. <i>Journal of Membrane Science</i> , 2006 , 284, 237-247	9.6	962
504	Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. <i>Journal of Membrane Science</i> , 2001 , 188, 115-128	9.6	900
503	Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. <i>Environmental Science & Environmental Science & Environ</i>	10.3	880
502	Colloid mobilization and transport in groundwater. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1996 , 107, 1-56	5.1	870
501	Antibacterial effects of carbon nanotubes: size does matter!. <i>Langmuir</i> , 2008 , 24, 6409-13	4	859
500	Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. <i>Environmental Science & Environmental Science & Envi</i>	10.3	830
499	Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. <i>Journal of Membrane Science</i> , 1996 , 119, 253-268	9.6	753

(2011-2005)

498	A novel ammoniadarbon dioxide forward (direct) osmosis desalination process. <i>Desalination</i> , 2005 , 174, 1-11	10.3	747
497	High performance thin-film composite forward osmosis membrane. <i>Environmental Science & Environmental </i>	10.3	738
496	Antifouling membranes for sustainable water purification: strategies and mechanisms. <i>Chemical Society Reviews</i> , 2016 , 45, 5888-5924	58.5	676
495	Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. <i>Journal of Membrane Science</i> , 2010 , 348, 337-345	9.6	661
494	Desalination by ammonialarbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. <i>Journal of Membrane Science</i> , 2006 , 278, 114-123	9.6	650
493	Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano, 2015, 9, 7226-36	16.7	620
492	Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. <i>Environmental Science & Environmental Science & Envir</i>	10.3	604
491	Water and sanitation in developing countries: including health in the equation. <i>Environmental Science & Environmental Science</i>	10.3	576
490	Aggregation and deposition kinetics of fullerene (C60) nanoparticles. <i>Langmuir</i> , 2006 , 22, 10994-1001	4	574
489	Forward osmosis: Where are we now?. <i>Desalination</i> , 2015 , 356, 271-284	10.3	568
488	Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). <i>Journal of Membrane Science</i> , 2010 , 365, 34-39	9.6	568
487	Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	545
486	Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. <i>Journal of Colloid and Interface Science</i> , 2007 , 309, 126-34	9.3	530
485	Relating Nanofiltration Membrane Performance to Membrane Charge (Electrokinetic) Characteristics. <i>Environmental Science & Environmental Science & Env</i>	10.3	516
484	Reverse draw solute permeation in forward osmosis: modeling and experiments. <i>Environmental Science & Environmental Science & </i>	10.3	513
483	Chemical and physical aspects of organic fouling of forward osmosis membranes. <i>Journal of Membrane Science</i> , 2008 , 320, 292-302	9.6	507
482	Internal concentration polarization in forward osmosis: role of membrane orientation. <i>Desalination</i> , 2006 , 197, 1-8	10.3	498
481	Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. <i>Journal of Membrane Science</i> , 2011 , 367, 340-352	9.6	489

480	Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. <i>Journal of Membrane Science</i> , 2007 , 295, 11-20	9.6	473
479	Mobile Subsurface Colloids and Their Role in Contaminant Transport. <i>Advances in Agronomy</i> , 1999 , 66, 121-193	7.7	460
478	Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. <i>Journal of Membrane Science</i> , 1997 , 127, 101-109	9.6	459
477	Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. <i>Energy and Environmental Science</i> , 2018 , 11, 1177-1196	35.4	458
476	Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. <i>Environmental Science & Environmental Science & Envir</i>	10.3	455
475	Energy requirements of ammonialarbon dioxide forward osmosis desalination. <i>Desalination</i> , 2007 , 207, 370-382	10.3	439
474	The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	433
473	Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. <i>Environmental Science & Environmental Science & Envir</i>	10.3	432
472	Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. <i>Environmental Science & Environmental Science & Environment</i>	10.3	430
471	Kinetics of deposition of colloidal particles in porous media. <i>Environmental Science & Environmental </i>	10.3	430
470	Bacterial adhesion and transport in porous media: role of the secondary energy minimum. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	409
469	Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 71-76	11	396
468	The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 112-120	11	392
467	Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. <i>ACS Nano</i> , 2010 , 4, 5471-9	16.7	392
466	Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: different behaviors of genogroups I and II. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 7891-7	4.8	390
465	A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small, 2008, 4, 481-	-4 1	387
464	Emerging opportunities for nanotechnology to enhance water security. <i>Nature Nanotechnology</i> , 2018 , 13, 634-641	28.7	381
463	Pharmaceutical retention mechanisms by nanofiltration membranes. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 7698-705	10.3	380

(2016-2006)

462	Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. <i>Environmental Science & Environmental Science</i>	10.3	380	
461	Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. <i>Journal of Membrane Science</i> , 2008 , 318, 458-466	9.6	377	
460	Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. <i>Langmuir</i> , 2005 , 21, 841-52	4	368	
459	Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	363	
458	Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. <i>Environmental Science & Environmental Science & Environ</i>	10.3	362	
457	Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. <i>Journal of Membrane Science</i> , 2007 , 298, 136-146	9.6	362	
456	Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. <i>Desalination</i> , 1994 , 95, 269-286	10.3	355	
455	Effect of Membrane Surface Roughness on ColloidMembrane DLVO Interactions. <i>Langmuir</i> , 2003 , 19, 4836-4847	4	354	
454	A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. <i>Journal of Membrane Science</i> , 2013 , 444, 523-538	9.6	327	
453	Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. <i>Langmuir</i> , 1990 , 6, 1153-1163	4	324	
452	Colloid Transport in Geochemically Heterogeneous Porous Media: Modeling and Measurements. <i>Environmental Science & Environmental Science & Environment</i>	10.3	321	
451	Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control. <i>Journal of Membrane Science</i> , 2002 , 203, 245	5 ⁹² 55	319	
450	Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. <i>Environmental Science & Environmental Sci</i>	10.3	317	
449	Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. <i>Langmuir</i> , 2004 , 20, 10818-28	4	313	
448	Dynamics of Colloid Deposition in Porous Media: Blocking Based on Random Sequential Adsorption. <i>Langmuir</i> , 1995 , 11, 801-812	4	305	
447	Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes. <i>Desalination</i> , 2013 , 312, 31-38	10.3	304	
446	Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. <i>Journal of Colloid and Interface Science</i> , 2008 , 324, 71-9	9.3	304	
445	Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. <i>Water Research</i> , 2016 , 89, 210-21	12.5	294	

444	DLVO Interaction between Rough Surfaces. <i>Langmuir</i> , 1998 , 14, 3365-3375	4	293
443	Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes. <i>Environmental Science & Environmental Science & Environm</i>	10.3	290
442	Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. <i>Environmental Science & Environmental Sci</i>	10.3	289
441	Modeling water flux in forward osmosis: Implications for improved membrane design. <i>AICHE Journal</i> , 2007 , 53, 1736-1744	3.6	288
440	Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation. Journal of Membrane Science, 2007 , 296, 83-92	9.6	281
439	Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. <i>Environmental Science & Technology</i> , 2011 , 45, 3672-9	10.3	278
438	Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 2869-77	9.5	275
437	Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms. <i>Environmental Science & Environmental Science & </i>	10.3	275
436	Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. <i>Journal of Membrane Science</i> , 2006 , 272, 198-210	9.6	274
435	Surface Element Integration: A Novel Technique for Evaluation of DLVO Interaction between a Particle and a Flat Plate. <i>Journal of Colloid and Interface Science</i> , 1997 , 193, 273-85	9.3	271
434	Colloidal Fouling of Reverse Osmosis Membranes: Measurements and Fouling Mechanisms. <i>Environmental Science & Environmental Sc</i>	10.3	270
433	Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 adhesion and transport. <i>Langmuir</i> , 2004 , 20, 7736-46	4	268
432	The search for a chlorine-resistant reverse osmosis membrane. <i>Desalination</i> , 1994 , 95, 325-345	10.3	268
431	Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. <i>Environmental Science & Environmental Science & En</i>	10.3	266
430	Arsenic removal by ferric chloride. <i>Journal - American Water Works Association</i> , 1996 , 88, 155-167	0.5	260
429	Arsenic Removal from Drinking Water during Coagulation. <i>Journal of Environmental Engineering,</i> ASCE, 1997 , 123, 800-807	2	258
428	Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. <i>Environmental Science & Environmental Sc</i>	10.3	253
427	Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. <i>Environmental Science & Environmental Environment</i>	10.3	251

426	Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. <i>Environmental Science & Environmental Science </i>	10.3	250
425	Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. <i>Environmental Science & Environmental Science </i>	10.3	245
424	Global challenges in energy and water supply: the promise of engineered osmosis. <i>Environmental Science & Environmental Scienc</i>	10.3	243
423	The role of nanotechnology in tackling global water challenges. <i>Nature Sustainability</i> , 2018 , 1, 166-175	22.1	241
422	Pressure-retarded osmosis for power generation from salinity gradients: is it viable?. <i>Energy and Environmental Science</i> , 2016 , 9, 31-48	35.4	240
421	Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. <i>ACS Applied Materials & Description</i> (2013), 5, 6694-700 (2013).) 3 ·5	235
420	Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. <i>Water Research</i> , 2012 , 46, 2683-92	12.5	234
419	Theory of concentration polarization in crossflow filtration. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 3389		234
418	Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation. <i>Environmental Science & Environmental Science & Env</i>	10.3	232
417	Nanophotonics-enabled solar membrane distillation for off-grid water purification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6936-6941	11.5	227
416	Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. <i>ACS Applied Materials & Discourt Materi</i>	9.5	226
415	Omniphobic Membrane for Robust Membrane Distillation. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 443-447	11	224
414	Relative Insignificance of Mineral Grain Zeta Potential to Colloid Transport in Geochemically Heterogeneous Porous Media. <i>Environmental Science & Environmental Science & Env</i>	10.3	224
413	Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. <i>Environmental Science & Environmental Sci</i>	10.3	223
412	Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. <i>Environmental Science & Environmental Science & Environmenta</i>	<u>-44</u> 3	221
411	Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. <i>Langmuir</i> , 2007 , 23, 5920-8	4	217
410	Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. <i>Journal of Membrane Science</i> , 2012 , 415-416, 1-8	9.6	216
409	Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9793-E9801	11.5	215

408	Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide-Silver Nanocomposites. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 12751-9	9.5	213
407	Forward with osmosis: emerging applications for greater sustainability. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	212
406	Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. <i>Journal of Membrane Science</i> , 2006 , 285, 81-89	9.6	211
405	Influence of Crossflow Membrane Filter Geometry and Shear Rate on Colloidal Fouling in Reverse Osmosis and Nanofiltration Separations. <i>Environmental Engineering Science</i> , 2002 , 19, 357-372	2	211
404	Kinetics of Colloid Deposition onto Heterogeneously Charged Surfaces in Porous Media. <i>Environmental Science & Environmental &</i>	10.3	209
403	Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. <i>Environmental Science & Environmental Science</i>	10.3	204
402	Environmental performance of graphene-based 3D macrostructures. <i>Nature Nanotechnology</i> , 2019 , 14, 107-119	28.7	203
401	A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations. <i>Environmental Science & Environmental Science & Environme</i>	10.3	202
400	A novel ammoniaBarbon dioxide osmotic heat engine for power generation. <i>Journal of Membrane Science</i> , 2007 , 305, 13-19	9.6	202
399	In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. <i>Water Research</i> , 2014 , 62, 260-70	12.5	199
398	Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. <i>Environmental Science & Environmental &</i>	10.3	199
397	Fouling of reverse osmosis membranes by hydrophilic organic matter: implications for water reuse. <i>Desalination</i> , 2006 , 187, 313-321	10.3	199
396	Environmental Applications of Interfacial Materials with Special Wettability. <i>Environmental Science & Environmental & Environ</i>	10.3	197
395	Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. <i>Langmuir</i> , 2004 , 20, 9000-6	4	197
394	The promise of bank filtration. Environmental Science & Environmental Science	10.3	197
393	Toward Resource Recovery from Wastewater: Extraction of Phosphorus from Digested Sludge Using a Hybrid Forward OsmosisMembrane Distillation Process. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 191-195	11	196
392	Role of Charge (Donnan) Exclusion in Removal of Arsenic from Water by a Negatively Charged Porous Nanofiltration Membrane. <i>Environmental Engineering Science</i> , 2001 , 18, 105-113	2	195
391	Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. <i>Nano Letters</i> , 2011 , 11, 2892-900	11.5	192

(2018-2006)

390	Mechanisms of colloidal natural organic matter fouling in ultrafiltration. <i>Journal of Membrane Science</i> , 2006 , 281, 716-725	9.6	191
389	Transport of in Situ Mobilized Colloidal Particles in Packed Soil Columns. <i>Environmental Science</i> & Samp; Technology, 1998, 32, 3562-3569	10.3	191
388	Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. <i>Journal of Membrane Science</i> , 2011 , 376, 196-206	9.6	190
387	Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. <i>Journal of Membrane Science</i> , 2013 , 444, 148-156	9.6	188
386	Single-walled carbon nanotubes exhibit limited transport in soil columns. <i>Environmental Science & Environmental & Environment</i>	10.3	187
385	Bacteriophage PRD1 and Silica Colloid Transport and Recovery in an Iron Oxide-Coated Sand Aquifer. <i>Environmental Science & Environmental Science & En</i>	10.3	184
384	Effect of electrolyte type on the electrophoretic mobility of polystyrene latex colloids. <i>Colloids and Surfaces</i> , 1990 , 44, 165-178		182
383	Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis. Journal of Membrane Science, 2004 , 244, 215-226	9.6	181
382	Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. <i>ACS Applied Materials & Description</i> (2012), 4, 5044-53	9.5	180
381	Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. <i>Journal of Membrane Science</i> , 2007 , 296, 42-50	9.6	180
380	Pathways and challenges for efficient solar-thermal desalination. <i>Science Advances</i> , 2019 , 5, eaax0763	14.3	172
379	Combined influence of natural organic matter (NOM) and colloidal particles on nanofiltration membrane fouling. <i>Journal of Membrane Science</i> , 2005 , 262, 27-41	9.6	172
378	Performance evaluation of sucrose concentration using forward osmosis. <i>Journal of Membrane Science</i> , 2009 , 338, 61-66	9.6	169
377	Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. <i>ACS Applied Materials & Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. ACS Applied Materials & Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. ACS Applied Materials & Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. ACS Applied Materials & Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. ACS Applied Materials & Development Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. ACS Applied Materials & Development Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. ACS Applied Materials & Development Deve</i>	9.5	169
376	Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated "Defending" and "Attacking" Strategies against Biofouling. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 23069-79	9.5	168
375	Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. <i>Journal of Membrane Science</i> , 2006 , 286, 52-59	9.6	168
374	Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous Imembranes. <i>Nature Energy</i> , 2016 , 1,	62.3	167
373	Highly efficient and sustainable non-precious-metal FeNC electrocatalysts for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2527-2539	13	167

372	Colloid deposition dynamics in flow-through porous media: role of electrolyte concentration. <i>Environmental Science & Environmental Science & Environm</i>	10.3	163
371	Antifouling Thin-Film Composite Membranes by Controlled Architecture of Zwitterionic Polymer Brush Layer. <i>Environmental Science & Environmental Scien</i>	10.3	160
370	Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. <i>Environmental Science & Environmental Science & Environme</i>	10.3	158
369	Influence of growth phase on adhesion kinetics of Escherichia coli D21g. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 3093-9	4.8	157
368	Colloidal fouling in forward osmosis: Role of reverse salt diffusion. <i>Journal of Membrane Science</i> , 2012 , 390-391, 277-284	9.6	156
367	Scalable fabrication of polymer membranes with vertically aligned 1 nm pores by magnetic field directed self-assembly. <i>ACS Nano</i> , 2014 , 8, 11977-86	16.7	155
366	Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. <i>Environmental Science & Environmental </i>	10.3	154
365	Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 precision separation. <i>Nature Communications</i> , 2020 , 11, 2015	17.4	153
364	Engineering Surface Energy and Nanostructure of Microporous Films for Expanded Membrane Distillation Applications. <i>Environmental Science & Energy (Company)</i> 2016, 50, 8112-9	10.3	151
363	Adverse impact of feed channel spacers on the performance of pressure retarded osmosis. <i>Environmental Science & Description of the Environmental Science </i>	10.3	150
362	Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups. <i>Environmental Science & Environmental Science & Env</i>	10.3	150
361	Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. <i>Desalination</i> , 2019 , 455, 100-114	10.3	149
360	A Novel Asymmetric Clamping Cell for Measuring Streaming Potential of Flat Surfaces. <i>Langmuir</i> , 2002 , 18, 2193-2198	4	149
359	Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 123-130	11	148
358	The global challenge for adequate and safe water 2006 , 55, 3-10		146
357	Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. <i>Desalination</i> , 2019 , 455, 34-57	10.3	146
356	Raising the Bar: Increased Hydraulic Pressure Allows Unprecedented High Power Densities in Pressure-Retarded Osmosis. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 55-59	11	145
355	Interpreting deposition patterns of microbial particles in laboratory-scale column experiments. <i>Environmental Science & Environmental Science & Envir</i>	10.3	144

(2013-2006)

354	Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter. <i>Journal of Membrane Science</i> , 2006 , 278, 72-82	9.6	143
353	In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. <i>Advances in Colloid and Interface Science</i> , 2004 , 107, 83-108	14.3	143
352	Particle formation during oxidation catalysis with Cp* iridium complexes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9785-95	16.4	141
351	Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes. <i>Environmental Science & Environmental Sci</i>	10.3	141
350	Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. <i>Journal of Membrane Science</i> , 2018 , 559, 98-106	9.6	140
349	Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. <i>Environmental Science & Environmental Science & Environment</i>	10.3	140
348	Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control. <i>Journal of Membrane Science</i> , 2014 , 450, 331-3	39 ⁶	140
347	The Bhadow Effectlin Colloid Transport and Deposition Dynamics in Granular Porous Media: Measurements and Mechanisms. <i>Environmental Science & Environmental Science & Environ</i>	10.3	140
346	Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling. <i>Journal of Membrane Science</i> , 2014 , 453, 498-515	9.6	139
345	Towards single-species selectivity of membranes with subnanometre pores. <i>Nature Nanotechnology</i> , 2020 , 15, 426-436	28.7	138
344	Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles. <i>Environmental Science & Environmental </i>	-191 ³	137
343	In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance. <i>Environmental Science & Environmental Science</i>	10.3	137
342	Thin-film composite forward osmosis membranes functionalized with graphene oxideBilver nanocomposites for biofouling control. <i>Journal of Membrane Science</i> , 2017 , 525, 146-156	9.6	137
341	Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure. <i>Journal of Membrane Science</i> , 2014 , 460, 206-212	9.6	137
340	Role of pressure in organic fouling in forward osmosis and reverse osmosis. <i>Journal of Membrane Science</i> , 2015 , 493, 748-754	9.6	136
339	Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 112-117	11	135
338	Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 1724-1732	7.3	135
337	Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: Analysis and experiments. <i>Journal of Membrane Science</i> , 2013 , 429, 330-337	9.6	135

336	Effect of Interparticle Electrostatic Double Layer Interactions on Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions: An Experimental Investigation. <i>Journal of Colloid and Interface Science</i> , 1998 , 204, 77-86	9.3	135
335	Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. <i>Environmental Science & Environmental Sci</i>	10.3	133
334	New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. <i>Environmental Science & Environmental </i>	10.3	132
333	Particle deposition on ideal collectors from dilute flowing suspensions: Mathematical formulation, numerical solution, and simulations. <i>Separation and Purification Technology</i> , 1994 , 4, 186-212		129
332	Kinetics of capture of colloidal particles in packed beds under attractive double layer interactions. Journal of Colloid and Interface Science, 1991 , 146, 337-352	9.3	129
331	Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. <i>Water Research</i> , 2017 , 109, 122	2-1 3 4	128
330	Removal of trace organic contaminants by the forward osmosis process. <i>Separation and Purification Technology</i> , 2013 , 103, 258-266	8.3	128
329	Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz sand. <i>Environmental Science & Environmental Science & Envi</i>	10.3	128
328	Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis. <i>Journal of Membrane Science</i> , 2013 , 438, 57-64	9.6	127
327	High Efficiency in Energy Generation from Salinity Gradients with Reverse Electrodialysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 1295-1302	8.3	126
326	Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes. <i>Desalination</i> , 2004 , 160, 1-12	10.3	126
325	Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis. <i>Desalination</i> , 2013 , 308, 73-81	10.3	125
324	Thermodynamic limits of extractable energy by pressure retarded osmosis. <i>Energy and Environmental Science</i> , 2014 , 7, 2706-2714	35.4	124
323	Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. <i>Environmental Science & Environmental Sci</i>	10.3	124
322	Silica scaling and scaling reversibility in forward osmosis. <i>Desalination</i> , 2013 , 312, 75-81	10.3	124
321	Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. <i>Water Research</i> , 2010 , 44, 3773-80	12.5	123
320	Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. <i>Journal of Membrane Science</i> , 2012 , 392-393, 9-17	9.6	122
319	Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 21309-21326	3.8	121

318	Salt cleaning of organic-fouled reverse osmosis membranes. Water Research, 2007, 41, 1134-42	12.5	121
317	Reinventing Fenton Chemistry: Iron Oxychloride Nanosheet for pH-Insensitive H2O2 Activation. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 186-191	11	120
316	Direct quantification of negatively charged functional groups on membrane surfaces. <i>Journal of Membrane Science</i> , 2012 , 389, 499-508	9.6	120
315	Relevance of electrokinetic theory for "soft" particles to bacterial cells: implications for bacterial adhesion. <i>Langmuir</i> , 2005 , 21, 6462-72	4	120
314	Predicting collision efficiencies of colloidal particles in porous media. Water Research, 1992, 26, 1-8	12.5	119
313	Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy and Environmental Science, 2018 , 11, 276-285	35.4	118
312	The road to nowhere: equilibrium partition coefficients for nanoparticles. <i>Environmental Science:</i> Nano, 2014 , 1, 317-323	7.1	116
311	Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). <i>Nanoscale</i> , 2010 , 2, 1789-94	7.7	116
310	A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. <i>Journal of Membrane Science</i> , 1998 , 145, 223-241	9.6	116
309	Calcium sulfate (gypsum) scaling in nanofiltration of agricultural drainage water. <i>Journal of Membrane Science</i> , 2002 , 205, 279-291	9.6	116
308	Dynamics of colloid deposition in porous media: Modeling the role of retained particles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1993 , 73, 49-63	5.1	116
307	Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency. <i>Environmental Science & Technology</i> , 2014 , 48, 5306-13	10.3	114
306	High-Pressure Reverse Osmosis for Energy-Efficient Hypersaline Brine Desalination: Current Status, Design Considerations, and Research Needs. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 467	-475	114
305	Biofouling in forward osmosis and reverse osmosis: Measurements and mechanisms. <i>Journal of Membrane Science</i> , 2015 , 493, 703-708	9.6	113
304	Role of Ionic Charge Density in Donnan Exclusion of Monovalent Anions by Nanofiltration. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	113
303	Arsenic removal by RO and NF membranes. <i>Journal - American Water Works Association</i> , 1997 , 89, 102-1	1⁄4. 5	112
302	Plasmid DNA adsorption on silica: kinetics and conformational changes in monovalent and divalent salts. <i>Biomacromolecules</i> , 2007 , 8, 24-32	6.9	112
301	High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. <i>Environmental Science & Environmental Science & Environme</i>	10.3	112

300	Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling. <i>Environmental Science & Environmental & Environmen</i>	10.3	111
299	Kinetics of Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions. Journal of Colloid and Interface Science, 1997 , 196, 267-277	9.3	111
298	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. <i>Nature Sustainability</i> , 2020 , 3, 981-990	22.1	111
297	Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. <i>Environmental Science & Environmental Science & Envi</i>	10.3	110
296	Direct microscopic observation of particle deposition in porous media: Role of the secondary energy minimum. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 294, 156-162	5.1	109
295	Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition. <i>Environmental Science & Environmental Science & </i>	10.3	109
294	Bioinspired single bacterial cell force spectroscopy. <i>Langmuir</i> , 2009 , 25, 9656-9	4	108
293	In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. <i>Desalination</i> , 2016 , 388, 1-8	10.3	106
292	The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. <i>Energy and Environmental Science</i> , 2020 , 13, 1694-1710	35.4	105
291	Particle Deposition onto a Permeable Surface in Laminar Flow. <i>Journal of Colloid and Interface Science</i> , 1995 , 173, 165-180	9.3	104
2 90	Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications. <i>Water Research</i> , 2014 , 49, 265-74	12.5	103
289	Transport of Iron Oxide Colloids in Packed Quartz Sand Media: Monolayer and Multilayer Deposition. <i>Journal of Colloid and Interface Science</i> , 2000 , 231, 32-41	9.3	103
288	Effect of Particle Size on the Kinetics of Particle Deposition under Attractive Double Layer Interactions. <i>Journal of Colloid and Interface Science</i> , 1994 , 164, 190-199	9.3	103
287	Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes. <i>ACS Applied Materials & District Science</i> , 2011 , 3, 462-8	9.5	102
286	Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. <i>Environmental Science & Environmental Science</i>	10.3	101
285	Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients. <i>Environmental Science & Environmental Science & Envi</i>	10.3	100
284	Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2001 , 191, 179-188	5.1	100
283	Forward osmosis desalination of brackish groundwater: Meeting water quality requirements for fertigation by integrating nanofiltration. <i>Journal of Membrane Science</i> , 2013 , 436, 1-15	9.6	99

282	Chemical cleaning of RO membranes fouled by wastewater effluent: Achieving higher efficiency with dual-step cleaning. <i>Journal of Membrane Science</i> , 2011 , 382, 100-106	9.6	99
281	Engineering flat sheet microporous PVDF films for membrane distillation. <i>Journal of Membrane Science</i> , 2015 , 492, 355-363	9.6	98
280	Desalination by forward osmosis: Identifying performance limiting parameters through module-scale modeling. <i>Journal of Membrane Science</i> , 2015 , 491, 159-167	9.6	96
279	Coupled model of concentration polarization and pore transport in crossflow nanofiltration. <i>AICHE Journal</i> , 2001 , 47, 2733-2745	3.6	96
278	Graphene oxide membranes with stable porous structure for ultrafast water transport. <i>Nature Nanotechnology</i> , 2021 , 16, 337-343	28.7	95
277	Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 1436-44	10.3	93
276	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. <i>Environmental Science & Enhance Mater Security</i> , 2017, 51, 10274-10281	10.3	93
275	Dynamics of coagulation of kaolin particles with ferric chloride. <i>Water Research</i> , 1994 , 28, 559-569	12.5	93
274	Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. <i>Journal of Membrane Science</i> , 2014 , 463, 94-101	9.6	92
273	Influence of growth phase on bacterial deposition: interaction mechanisms in packed-bed column and radial stagnation point flow systems. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	92
272	Membrane scaling and flux decline during fertiliser-drawn forward osmosis desalination of brackish groundwater. <i>Water Research</i> , 2014 , 57, 172-82	12.5	91
271	Osmotic equilibrium in the forward osmosis process: Modelling, experiments and implications for process performance. <i>Journal of Membrane Science</i> , 2014 , 453, 240-252	9.6	91
270	Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis. <i>Water Research</i> , 2013 , 47, 4567-75	12.5	91
269	Multiwalled carbon nanotube filter: improving viral removal at low pressure. <i>Langmuir</i> , 2010 , 26, 14975	-842	90
268	Designing block copolymer architectures for targeted membrane performance. <i>Polymer</i> , 2014 , 55, 347-	35.3	89
267	Staged reverse osmosis operation: Configurations, energy efficiency, and application potential. <i>Desalination</i> , 2015 , 366, 9-14	10.3	88
266	Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation. <i>Environmental Science & Environmental & Enviro</i>	10.3	88
265	Calcium and magnesium cations enhance the adhesion of motile and nonmotile pseudomonas aeruginosa on alginate films. <i>Langmuir</i> , 2008 , 24, 3392-9	4	88

264	Concentration Polarization of Interacting Solute Particles in Cross-Flow Membrane Filtration. Journal of Colloid and Interface Science, 1999 , 212, 81-99	9.3	88
263	Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination. <i>Journal of Membrane Science</i> , 2017 , 539, 458-474	9.6	86
262	Performance evaluation of trimethylamineBarbon dioxide thermolytic draw solution for engineered osmosis. <i>Journal of Membrane Science</i> , 2015 , 473, 302-309	9.6	86
261	Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: measurements and mechanisms. <i>Biomacromolecules</i> , 2007 , 8, 113-21	6.9	86
260	Effect of ferric oxyhydroxide grain coatings on the transport of bacteriophage PRD1 and Cryptosporidium parvum oocysts in saturated porous media. <i>Environmental Science & Environmental Science & Env</i>	10.3	86
259	Role of spatial distribution of porous medium surface charge heterogeneity in colloid transport. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2001 , 191, 3-15	5.1	86
258	Engineered Slippery Surface to Mitigate Gypsum Scaling in Membrane Distillation for Treatment of Hypersaline Industrial Wastewaters. <i>Environmental Science & Environmental Sc</i>	10.3	86
257	Bidirectional diffusion of ammonium and sodium cations in forward osmosis: role of membrane active layer surface chemistry and charge. <i>Environmental Science & Environmental </i>	10.3	85
256	Bidirectional permeation of electrolytes in osmotically driven membrane processes. <i>Environmental Science & Environmental Scie</i>	10.3	85
255	Increasing Functional Sustainability of Water and Sanitation Supplies in Rural Sub-Saharan Africa. <i>Environmental Engineering Science</i> , 2009 , 26, 1017-1023	2	85
254	Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties. <i>Environmental Science & Environmental & Environmen</i>	10.3	84
253	SWNT-MWNT hybrid filter attains high viral removal and bacterial inactivation. <i>Langmuir</i> , 2010 , 26, 1915	5 <u>3</u> -8	84
252	Transient Deposition of Colloidal Particles in Heterogeneous Porous Media. <i>Journal of Colloid and Interface Science</i> , 1994 , 167, 301-313	9.3	83
251	Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. <i>Journal of Membrane Science</i> , 2017 , 529, 1-10	9.6	81
250	DLVO interaction energy between spheroidal particles and a flat surface. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 165, 143-156	5.1	81
249	Nanocomposites of vertically aligned single-walled carbon nanotubes by magnetic alignment and polymerization of a lyotropic precursor. <i>ACS Nano</i> , 2010 , 4, 6651-8	16.7	80
248	Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide. <i>Environmental Science & Environmental Sci</i>	10.3	78
247	Can batch or semi-batch processes save energy in reverse-osmosis desalination?. <i>Desalination</i> , 2017 , 402, 109-122	10.3	78

(2015-2010)

246	Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria. <i>Environmental Science & Environmental Science & Envir</i>	10.3	78
245	Science and technology for water purification in the coming decades 2009 , 337-346		78
244	Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa. <i>ISME Journal</i> , 2008 , 2, 180-94	11.9	78
243	Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport. <i>Journal of Membrane Science</i> , 2019 , 580, 316-326	9.6	77
242	Thin Polymer Films with Continuous Vertically Aligned 1 nm Pores Fabricated by Soft Confinement. <i>ACS Nano</i> , 2016 , 10, 150-8	16.7	77
241	Adsorption of plasmid DNA to a natural organic matter-coated silica surface: kinetics, conformation, and reversibility. <i>Langmuir</i> , 2007 , 23, 3273-9	4	77
240	Impact of alginate conditioning film on deposition kinetics of motile and nonmotile Pseudomonas aeruginosa strains. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 5227-34	4.8	77
239	Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts. <i>Langmuir</i> , 2005 , 21, 710-6	4	76
238	Virus transport in physically and geochemically heterogeneous subsurface porous media. <i>Journal of Contaminant Hydrology</i> , 2002 , 57, 161-87	3.9	75
237	Application of membrane dewatering for algal biofuel. Algal Research, 2015, 11, 1-12	5	74
237	Application of membrane dewatering for algal biofuel. <i>Algal Research</i> , 2015 , 11, 1-12 Boron transport in forward osmosis: Measurements, mechanisms, and comparison with reverse osmosis. <i>Journal of Membrane Science</i> , 2012 , 419-420, 42-48	9.6	74 74
	Boron transport in forward osmosis: Measurements, mechanisms, and comparison with reverse		
236	Boron transport in forward osmosis: Measurements, mechanisms, and comparison with reverse osmosis. <i>Journal of Membrane Science</i> , 2012 , 419-420, 42-48 Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate	9.6	74
236	Boron transport in forward osmosis: Measurements, mechanisms, and comparison with reverse osmosis. <i>Journal of Membrane Science</i> , 2012 , 419-420, 42-48 Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate differing responses to solution chemistry. <i>Environmental Science & Camp; Technology</i> , 2011 , 45, 520-6 Influence of biofouling on boron removal by nanofiltration and reverse osmosis membranes.	9.6	74 72
236 235 234	Boron transport in forward osmosis: Measurements, mechanisms, and comparison with reverse osmosis. <i>Journal of Membrane Science</i> , 2012 , 419-420, 42-48 Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate differing responses to solution chemistry. <i>Environmental Science & amp; Technology</i> , 2011 , 45, 520-6 Influence of biofouling on boron removal by nanofiltration and reverse osmosis membranes. <i>Journal of Membrane Science</i> , 2008 , 318, 264-270 Tuning Pb(II) Adsorption from Aqueous Solutions on Ultrathin Iron Oxychloride (FeOCI)	9.6	74 72 72
236235234233	Boron transport in forward osmosis: Measurements, mechanisms, and comparison with reverse osmosis. <i>Journal of Membrane Science</i> , 2012 , 419-420, 42-48 Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate differing responses to solution chemistry. <i>Environmental Science & Mamp; Technology</i> , 2011 , 45, 520-6 Influence of biofouling on boron removal by nanofiltration and reverse osmosis membranes. <i>Journal of Membrane Science</i> , 2008 , 318, 264-270 Tuning Pb(II) Adsorption from Aqueous Solutions on Ultrathin Iron Oxychloride (FeOCl) Nanosheets. <i>Environmental Science & Mamp; Technology</i> , 2019 , 53, 2075-2085 Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in	9.6 10.3 9.6	74 72 72 71
236235234233232	Boron transport in forward osmosis: Measurements, mechanisms, and comparison with reverse osmosis. <i>Journal of Membrane Science</i> , 2012 , 419-420, 42-48 Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate differing responses to solution chemistry. <i>Environmental Science & amp; Technology</i> , 2011 , 45, 520-6 Influence of biofouling on boron removal by nanofiltration and reverse osmosis membranes. <i>Journal of Membrane Science</i> , 2008 , 318, 264-270 Tuning Pb(II) Adsorption from Aqueous Solutions on Ultrathin Iron Oxychloride (FeOCl) Nanosheets. <i>Environmental Science & amp; Technology</i> , 2019 , 53, 2075-2085 Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis. <i>Journal of Membrane Science</i> , 2014 , 465, 159-166 Determination of absolute coagulation rate constants by multiangle light scattering. <i>Journal of</i>	9.6 10.3 9.6 10.3	74 72 72 71 71

228	Energy Efficiency of Electro-Driven Brackish Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive Deionization. <i>Environmental Science & amp; Technology</i> , 2020 , 54, 3663-3677	10.3	70
227	Reactive, Self-Cleaning Ultrafiltration Membrane Functionalized with Iron Oxychloride Nanocatalysts. <i>Environmental Science & Environmental Science & </i>	10.3	70
226	Calicivirus removal in a membrane bioreactor wastewater treatment plant. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5170-7	4.8	70
225	Structural Growth and Viscoelastic Properties of Adsorbed Alginate Layers in Monovalent and Divalent Salts. <i>Macromolecules</i> , 2006 , 39, 6558-6564	5.5	7°
224	Nanofiltration of Hormone Mimicking Trace Organic Contaminants. <i>Separation Science and Technology</i> , 2005 , 40, 2633-2649	2.5	69
223	Fouling of Reverse Osmosis Membranes by Aluminum Oxide Colloids. <i>Journal of Environmental Engineering, ASCE</i> , 1995 , 121, 884-892	2	69
222	Recent advances in ion selectivity with capacitive deionization. <i>Energy and Environmental Science</i> , 2021 , 14, 1095-1120	35.4	68
221	Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat. <i>Environmental Science & Environmental & Environmen</i>	10.3	67
220	Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces. <i>Environmental Science & Environmental </i>	10.3	67
219	Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. <i>Journal of Colloid and Interface Science</i> , 2013 , 392, 27-33	9.3	65
218	Highly Selective Vertically Aligned Nanopores in Sustainably Derived Polymer Membranes by Molecular Templating. <i>ACS Nano</i> , 2017 , 11, 3911-3921	16.7	64
217	Impaired Performance of Pressure-Retarded Osmosis due to Irreversible Biofouling. <i>Environmental Science & Environmental Scien</i>	10.3	64
216	Biocidal activity of plasma modified electrospun polysulfone mats functionalized with polyethyleneimine-capped silver nanoparticles. <i>Langmuir</i> , 2011 , 27, 13159-64	4	64
215	Carbon nanotube-based antimicrobial biomaterials formed via layer-by-layer assembly with polypeptides. <i>Journal of Colloid and Interface Science</i> , 2012 , 388, 268-73	9.3	63
214	Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation. <i>Langmuir</i> , 2012 , 28, 13993-9	4	61
213	Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. <i>Biofouling</i> , 2009 , 25, 401-11	3.3	61
212	Biofouling and microbial communities in membrane distillation and reverse osmosis. <i>Environmental Science & Environmental Scie</i>	10.3	59
211	Efficacy of antifouling modification of ultrafiltration membranes by grafting zwitterionic polymer brushes. <i>Separation and Purification Technology</i> , 2017 , 189, 389-398	8.3	59

(2008-2017)

210	Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat. <i>Environmental Science & Enp; Technology</i> , 2017 , 51, 12925-12937	10.3	58
209	Impact of organic and colloidal fouling on trace organic contaminant rejection by forward osmosis: Role of initial permeate flux. <i>Desalination</i> , 2014 , 336, 146-152	10.3	58
208	Fatty acid fouling of reverse osmosis membranes: implications for wastewater reclamation. <i>Water Research</i> , 2008 , 42, 4393-403	12.5	58
207	Performance limitation of the full-scale reverse osmosis process. <i>Journal of Membrane Science</i> , 2003 , 214, 239-244	9.6	58
206	Intrapore energy barriers govern ion transport and selectivity of desalination membranes. <i>Science Advances</i> , 2020 , 6,	14.3	58
205	Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. <i>Journal of Membrane Science</i> , 2018 , 565, 293-302	9.6	57
204	Influence of shear on the production of extracellular polymeric substances in membrane bioreactors. <i>Water Research</i> , 2009 , 43, 4305-15	12.5	57
203	Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis. <i>Desalination</i> , 2016 , 389, 108-118	10.3	56
202	Bacterial swimming motility enhances cell deposition and surface coverage. <i>Environmental Science & Environmental Science</i>	10.3	56
201	Mechanism of Heterogeneous Fenton Reaction Kinetics Enhancement under Nanoscale Spatial Confinement. <i>Environmental Science & Enhancement</i> , 2020, 54, 10868-10875	10.3	56
200	Relating Organic Fouling in Membrane Distillation to Intermolecular Adhesion Forces and Interfacial Surface Energies. <i>Environmental Science & Energies</i> , 2018, 52, 14198-14207	10.3	56
199	Thermally switchable aligned nanopores by magnetic-field directed self-assembly of block copolymers. <i>Advanced Materials</i> , 2014 , 26, 5148-54	24	55
198	Actinia-like multifunctional nanocoagulant for single-step removal of water contaminants. <i>Nature Nanotechnology</i> , 2019 , 14, 64-71	28.7	55
197	High performance polyester reverse osmosis desalination membrane with chlorine resistance. <i>Nature Sustainability</i> , 2021 , 4, 138-146	22.1	55
196	The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system. <i>Chemosphere</i> , 2015 , 136, 125-32	8.4	54
195	Influence of polyamide membrane surface chemistry on gypsum scaling behavior. <i>Journal of Membrane Science</i> , 2017 , 525, 249-256	9.6	53
194	Cp* Iridium Precatalysts for Selective CH Oxidation with Sodium Periodate As the Terminal Oxidant. <i>Organometallics</i> , 2013 , 32, 957-965	3.8	53
193	Norovirus removal and particle association in a waste stabilization pond. <i>Environmental Science</i> & amp; Technology, 2008, 42, 9151-7	10.3	53

192	Mobilization of natural colloids from an iron oxide-coated sand aquifer: effect of pH and ionic strength. <i>Environmental Science & Environmental Scien</i>	10.3	53
191	Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse. <i>Journal of Membrane Science</i> , 2016 , 514, 636-645	9.6	53
190	Permselectivity limits of biomimetic desalination membranes. Science Advances, 2018, 4, eaar8266	14.3	53
189	Comparison of organic fouling resistance of thin-film composite membranes modified by hydrophilic silica nanoparticles and zwitterionic polymer brushes. <i>Journal of Membrane Science</i> , 2017 , 544, 135-142	9.6	52
188	Particle Deposition onto Solid Surfaces with Micropatterned Charge Heterogeneity: The Hydrodynamic Bumpleffect. <i>Langmuir</i> , 2003 , 19, 6594-6597	4	52
187	High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 692-700	11	52
186	Performance and Mechanisms of Ultrafiltration Membrane Fouling Mitigation by Coupling Coagulation and Applied Electric Field in a Novel Electrocoagulation Membrane Reactor. <i>Environmental Science & Environmental Science & </i>	10.3	51
185	Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment. <i>Environmental Science & Environmental &</i>	10.3	51
184	Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. <i>Chemical Society Reviews</i> , 2021 , 50, 6290-6307	58.5	50
183	Molecular Design of Liquid Crystalline Brush-Like Block Copolymers for Magnetic Field Directed Self-Assembly: A Platform for Functional Materials <i>ACS Macro Letters</i> , 2014 , 3, 462-466	6.6	49
182	Emergence of thermodynamic restriction and its implications for full-scale reverse osmosis processes. <i>Desalination</i> , 2003 , 155, 213-228	10.3	49
181	A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. <i>Journal of Contaminant Hydrology</i> , 2001 , 49, 173-99	3.9	49
180	A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes. <i>Journal of Membrane Science</i> , 2017 , 534, 100-108	9.6	48
179	Thermal desalination membranes: Carbon nanotubes keep up the heat. <i>Nature Nanotechnology</i> , 2017 , 12, 501-503	28.7	48
178	Monte Carlo Simulations of Framework Defects in Layered Two-Dimensional Nanomaterial Desalination Membranes: Implications for Permeability and Selectivity. <i>Environmental Science & Environmental Science</i>	10.3	48
177	An Osmotic Membrane Bioreactor-Membrane Distillation System for Simultaneous Wastewater Reuse and Seawater Desalination: Performance and Implications. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 14311-14320	10.3	47
176	Kinetics and energetics trade-off in reverse osmosis desalination with different configurations. <i>Desalination</i> , 2017 , 401, 42-52	10.3	47
175	Coupled Influence of Colloidal and Hydrodynamic Interactions on the RSA Dynamic Blocking Function for Particle Deposition onto Packed Spherical Collectors. <i>Journal of Colloid and Interface Science</i> , 2000 , 229, 554-567	9.3	47

174	Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. <i>Environmental Science & Environmental Science & Env</i>	10.3	47	
173	Acyl-chloride quenching following interfacial polymerization to modulate the water permeability, selectivity, and surface charge of desalination membranes. <i>Journal of Membrane Science</i> , 2017 , 535, 35	7-384	46	
172	Silica-Coated Titania and Zirconia Colloids for Subsurface Transport Field Experiments. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	46	
171	Concentration and Recovery of Dyes from Textile Wastewater Using a Self-Standing, Support-Free Forward Osmosis Membrane. <i>Environmental Science & Environmental Science & Envi</i>	10.3	45	
170	Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. <i>Water Research</i> , 2020 , 170, 115317	12.5	45	
169	Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. <i>Science Advances</i> , 2019 , 5, eaav9308	14.3	44	
168	Micropatterning Microscopic Charge Heterogeneity on Flat Surfaces for Studying the Interaction between Colloidal Particles and Heterogeneously Charged Surfaces. <i>Nano Letters</i> , 2002 , 2, 393-396	11.5	44	
167	1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs. <i>Science of the Total Environment</i> , 2019 , 690, 853-866	10.2	43	
166	Adhesion of nonmotile Pseudomonas aeruginosa on "soft" polyelectrolyte layer in a radial stagnation point flow system: measurements and model predictions. <i>Langmuir</i> , 2007 , 23, 12301-8	4	42	
165	Colloid transport in a geochemically heterogeneous porous medium: aquifer tank experiment and modeling. <i>Journal of Contaminant Hydrology</i> , 2003 , 65, 161-82	3.9	42	
164	Indirect evidence for hydration forces in the deposition of polystyrene latex colloids on glass surfaces. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1990 , 86, 1623		42	
163	Biocatalytic and salt selective multilayer polyelectrolyte nanofiltration membrane. <i>Journal of Membrane Science</i> , 2018 , 549, 357-365	9.6	42	
162	Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. <i>Journal of Membrane Science</i> , 2019 , 581, 413-420	9.6	40	
161	Probing the Viability of Oxo-Coupling Pathways in Iridium-Catalyzed Oxygen Evolution. <i>Organometallics</i> , 2013 , 32, 5384-5390	3.8	40	
160	Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode. <i>Water Research</i> , 2019 , 160, 445-453	12.5	39	
159	Osmotic dilution for sustainable greenwall irrigation by liquid fertilizer: Performance and implications. <i>Journal of Membrane Science</i> , 2015 , 494, 32-38	9.6	39	
158	Combined Organic Fouling and Inorganic Scaling in Reverse Osmosis: Role of Protein-Silica Interactions. <i>Environmental Science & Environmental Science</i>	10.3	39	
157	The effect of particle density on collisions between sinking particles: implications for particle aggregation in the ocean. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 1994 , 41, 469-483	2.5	39	

156	Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling. <i>Environmental Science & Environmental Science</i> & Environmental Science & Env	10.3	38
155	Thin film composite membrane compaction in high-pressure reverse osmosis. <i>Journal of Membrane Science</i> , 2020 , 610, 118268	9.6	38
154	In Situ Electrochemical Generation of Reactive Chlorine Species for Efficient Ultrafiltration Membrane Self-Cleaning. <i>Environmental Science & Environmental Science & Environ</i>	10.3	38
153	Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nature Communications, 2020 , 11, 6228	17.4	38
152	Elements Provide a Clue: Nanoscale Characterization of Thin-Film Composite Polyamide Membranes. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	37
151	Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures. <i>Environmental Science & Environmental Scienc</i>	10.3	37
150	Yale constructs forward osmosis desalination pilot plant. <i>Membrane Technology</i> , 2007 , 2007, 7-8	1.8	37
149	Particle Filtration for Wastewater Irrigation. <i>Journal of Irrigation and Drainage Engineering - ASCE</i> , 1989 , 115, 474-487	1.1	37
148	A Self-Standing, Support-Free Membrane for Forward Osmosis with No Internal Concentration Polarization. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 266-271	11	36
147	Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. <i>Water Resources Research</i> , 2001 , 37, 209-222	5.4	34
146	Reverse Osmosis Biofilm Dispersal by Osmotic Back-Flushing: Cleaning via Substratum Perforation. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 162-166	11	33
145	Calculation of particle deposition rate under unfavourable particle urface interactions. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 3443-3452		33
144	Electrified Membranes for Water Treatment Applications. ACS ES&T Engineering, 2021, 1, 725-752		33
143	Asymmetric membranes for membrane distillation and thermo-osmotic energy conversion. <i>Desalination</i> , 2019 , 452, 141-148	10.3	33
142	Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties. <i>Desalination</i> , 2016 , 380, 52-59	10.3	32
141	Monte Carlo simulation of colloidal membrane filtration: Model development with application to characterization of colloid phase transition. <i>Journal of Membrane Science</i> , 2005 , 255, 291-305	9.6	32
140	Engineering Carbon Nanotube Forest Superstructure for Robust Thermal Desalination Membranes. <i>Advanced Functional Materials</i> , 2019 , 29, 1903125	15.6	31
139	Relating Selectivity and Separation Performance of Lamellar Two-Dimensional Molybdenum Disulfide (MoS) Membranes to Nanosheet Stacking Behavior. <i>Environmental Science & Environmental Science & Envi</i>	10.3	31

(2010-2018)

138	Elucidating the mechanisms underlying the difference between chloride and nitrate rejection in nanofiltration. <i>Journal of Membrane Science</i> , 2018 , 548, 694-701	9.6	31	
137	Aligned nanostructured polymers by magnetic-field-directed self-assembly of a polymerizable lyotropic mesophase. <i>ACS Applied Materials & Discrete Responsion</i> (2014), 6, 19710-7	9.5	30	
136	Polyamide formation on a cellulose triacetate support for osmotic membranes: Effect of linking molecules on membrane performance. <i>Desalination</i> , 2013 , 312, 2-9	10.3	30	
135	Theoretical investigation of colloid separation from dilute aqueous suspensions by oppositely charged granular media. <i>Separation and Purification Technology</i> , 1992 , 2, 2-12		30	
134	Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. <i>ACS Nano</i> , 2020 , 14, 10894-10916	16.7	30	
133	Removal of arsenic with reduced graphene oxide-TiO2-enabled nanofibrous mats. <i>Chemical Engineering Journal</i> , 2019 , 375, 122040	14.7	29	
132	Tuning the permselectivity of polymeric desalination membranes via control of polymer crystallite size. <i>Nature Communications</i> , 2019 , 10, 2347	17.4	29	
131	Loss of Phospholipid Membrane Integrity Induced by Two-Dimensional Nanomaterials. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 404-409	11	29	
130	Isolation and assessment of phytate-hydrolysing bacteria from the DelMarVa Peninsula. <i>Environmental Microbiology</i> , 2007 , 9, 3100-7	5.2	29	
129	Mitigating biofouling on thin-film composite polyamide membranes using a controlled-release platform. <i>Journal of Membrane Science</i> , 2014 , 453, 84-91	9.6	28	
128	Assessment of latrine use and quality and association with risk of trachoma in rural Tanzania. <i>Transactions of the Royal Society of Tropical Medicine and Hygiene</i> , 2010 , 104, 283-9	2	28	
127	Control of Calcium Sulfate (Gypsum) Scale in Nanofiltration of Saline Agricultural Drainage Water. <i>Environmental Engineering Science</i> , 2002 , 19, 387-397	2	28	
126	Ion Selectivity in Brackish Water Desalination by Reverse Osmosis: Theory, Measurements, and Implications. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 42-47	11	28	
125	Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. <i>Nature Nanotechnology</i> , 2020 , 15, 1025-1032	28.7	28	
124	Techno-economic assessment of a closed-loop osmotic heat engine. <i>Journal of Membrane Science</i> , 2017 , 535, 178-187	9.6	27	
123	Tunable Molybdenum Disulfide-Enabled Fiber Mats for High-Efficiency Removal of Mercury from Water. <i>ACS Applied Materials & Daterfaces</i> , 2020 , 12, 18446-18456	9.5	27	
122	Economic performance of membrane distillation configurations in optimal solar thermal desalination systems. <i>Desalination</i> , 2019 , 472, 114164	10.3	27	
121	Adsorption kinetics and reversibility of linear plasmid DNA on silica surfaces: influence of alkaline earth and transition metal ions. <i>Biomacromolecules</i> , 2010 , 11, 1225-30	6.9	27	

120	Relationship between use of water from community-scale water treatment refill kiosks and childhood diarrhea in Jakarta. <i>American Journal of Tropical Medicine and Hygiene</i> , 2012 , 87, 979-84	3.2	27
119	Zwitterionic coating on thin-film composite membranes to delay gypsum scaling in reverse osmosis. <i>Journal of Membrane Science</i> , 2021 , 618, 118568	9.6	27
118	Energy barriers to anion transport in polyelectrolyte multilayer nanofiltration membranes: Role of intra-pore diffusion. <i>Journal of Membrane Science</i> , 2020 , 603, 117921	9.6	26
117	Carbon nanotube bundling: influence on layer-by-layer assembly and antimicrobial activity. <i>Soft Matter</i> , 2013 , 9, 2136	3.6	26
116	Controlled TiO Growth on Reverse Osmosis and Nanofiltration Membranes by Atomic Layer Deposition: Mechanisms and Potential Applications. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	26
115	Elucidating the Role of Oxidative Debris in the Antimicrobial Properties of Graphene Oxide. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1164-1174	5.6	25
114	Biological approaches for addressing the grand challenge of providing access to clean drinking water. <i>Journal of Biological Engineering</i> , 2011 , 5, 2	6.3	25
113	Membrane characterization by dynamic hysteresis: Measurements, mechanisms, and implications for membrane fouling. <i>Journal of Membrane Science</i> , 2011 , 366, 17-24	9.6	25
112	Fabrication of a Desalination Membrane with Enhanced Microbial Resistance through Vertical Alignment of Graphene Oxide. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 614-620	11	24
111	The importance of microscopic characterization of membrane biofilms in an unconfined environment. <i>Desalination</i> , 2014 , 348, 8-15	10.3	24
110	More than a drop in the bucket: decentralized membrane-based drinking water refill stations in southeast Asia. <i>Environmental Science & Environmental </i>	10.3	24
109	Dynamics of Coagulation of Clay Particles with Aluminum Sulfate. <i>Journal of Environmental Engineering, ASCE</i> , 1994 , 120, 169-189	2	24
108	Graphene Oxide-Functionalized Membranes: The Importance of Nanosheet Surface Exposure for Biofouling Resistance. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	24
107	Membrane Materials for Selective Ion Separations at the Water-Energy Nexus. <i>Advanced Materials</i> , 2021 , 33, e2101312	24	24
106	Nanopore-Based Power Generation from Salinity Gradient: Why It Is Not Viable. <i>ACS Nano</i> , 2021 , 15, 4093-4107	16.7	24
105	One-step sonochemical synthesis of a reduced graphene oxide IZnO nanocomposite with antibacterial and antibiofouling properties. <i>Environmental Science: Nano</i> , 2019 , 6, 3080-3090	7.1	23
104	Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient Heterogeneous Fenton Water Treatment. <i>Environmental Science & Environmental & E</i>	10.3	23
103	A Path to Ultraselectivity: Support Layer Properties To Maximize Performance of Biomimetic Desalination Membranes. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	22

(2013-2013)

102	Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya. <i>Ecological Economics</i> , 2013 , 87, 137-144	5.6	22
101	Removing particles and THM precursors by enhanced coagulation. <i>Journal - American Water Works Association</i> , 1998 , 90, 139-150	0.5	22
100	Deposition of Brownian particles in porous media: Modified boundary conditions for the sphere-in-cell model. <i>Journal of Colloid and Interface Science</i> , 1992 , 153, 294-297	9.3	22
99	Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling. <i>Water Research</i> , 2020 , 185, 116203	12.5	22
98	Photografting Graphene Oxide to Inert Membrane Materials to Impart Antibacterial Activity. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 141-147	11	21
97	Single crystal texture by directed molecular self-assembly along dual axes. <i>Nature Materials</i> , 2019 , 18, 1235-1243	27	21
96	Vapor-gap membranes for highly selective osmotically driven desalination. <i>Journal of Membrane Science</i> , 2018 , 555, 407-417	9.6	21
95	Reverse Permeation of Weak Electrolyte Draw Solutes in Forward Osmosis. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 13463-13472	3.9	21
94	Ionization behavior of nanoporous polyamide membranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 30191-30200	11.5	21
93	Strong Differential Monovalent Anion Selectivity in Narrow Diameter Carbon Nanotube Porins. <i>ACS Nano</i> , 2020 , 14, 6269-6275	16.7	20
92	A Novel Method for Investigating the Influence of Feed Water Recovery on Colloidal and NOM Fouling of RO and NF Membranes. <i>Environmental Engineering Science</i> , 2005 , 22, 496-509	2	20
91	Capillary-driven desalination in a synthetic mangrove. <i>Science Advances</i> , 2020 , 6, eaax5253	14.3	19
90	Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships <i>Chemical Society Reviews</i> , 2021 ,	58.5	19
89	Bacterial inactivation by a carbon nanotubellon oxide nanocomposite: a mechanistic study using E. coli mutants. <i>Environmental Science: Nano</i> , 2018 , 5, 372-380	7.1	19
88	The role of endocrine disrupters in water recycling: risk or mania?. <i>Water Science and Technology</i> , 2004 , 50, 215-220	2.2	18
87	Effect of depletion interactions on transport of colloidal particles in porous media. <i>Journal of Colloid and Interface Science</i> , 2003 , 262, 372-83	9.3	18
86	Characterization of Dehydration during Ion Transport in Polymeric Nanochannels. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14242-14252	16.4	18
85	Modeling risk categories to predict the longitudinal prevalence of childhood diarrhea in Indonesia. American Journal of Tropical Medicine and Hygiene, 2013, 89, 884-91	3.2	16

84	Membrane Separations in Aquatic Systems. Environmental Engineering Science, 2002, 19, 341-341	2	16
83	Similarities and differences between potassium and ammonium ions in liquid water: a first-principles study. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 2540-2548	3.6	16
82	Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. <i>ACS ES&T Engineering</i> , 2021 , 1, 851-864		16
81	Gravity-Induced Coagulation of Spherical Particles of Different Size and Density. <i>Journal of Colloid and Interface Science</i> , 1998 , 197, 334-47	9.3	15
8o	Novel numerical method for calculating initial flux of colloid particle adsorption through an energy barrier. <i>Journal of Colloid and Interface Science</i> , 2008 , 319, 406-15	9.3	15
79	Selective membranes in water and wastewater treatment: Role of advanced materials. <i>Materials Today</i> , 2021 , 50, 516-516	21.8	15
78	Response to comments on Domparison of energy consumption in desalination by capacitive deionization and reverse osmosis Desalination, 2019 , 462, 48-55	10.3	14
77	Induced Charge Anisotropy: A Hidden Variable Affecting Ion Transport through Membranes. <i>Matter</i> , 2020 , 2, 735-750	12.7	14
76	Stable sequestration of single-walled carbon nanotubes in self-assembled aqueous nanopores. Journal of the American Chemical Society, 2012 , 134, 3950-3	16.4	14
75	Environmental Applications of Engineered Materials with Nanoconfinement. <i>ACS ES&T Engineering</i> , 2021 , 1, 706-724		14
74	Controlled grafting of polymer brush layers from porous cellulosic membranes. <i>Journal of Membrane Science</i> , 2020 , 596, 117719	9.6	13
73			/
	Removal of Emerging Wastewater Organic Contaminants by Polyelectrolyte Multilayer Nanofiltration Membranes with Tailored Selectivity. <i>ACS ES&T Engineering</i> , 2021 , 1, 404-414		13
72		10.3	13
	Nanofiltration Membranes with Tailored Selectivity. <i>ACS ES&T Engineering</i> , 2021 , 1, 404-414 Electrochemical-Osmotic Process for Simultaneous Recovery of Electric Energy, Water, and Metals	10.3	
72	Nanofiltration Membranes with Tailored Selectivity. <i>ACS ES&T Engineering</i> , 2021 , 1, 404-414 Electrochemical-Osmotic Process for Simultaneous Recovery of Electric Energy, Water, and Metals from Wastewater. <i>Environmental Science & Environmental Science and</i>		12
72 71	Nanofiltration Membranes with Tailored Selectivity. <i>ACS ES&T Engineering</i> , 2021 , 1, 404-414 Electrochemical-Osmotic Process for Simultaneous Recovery of Electric Energy, Water, and Metals from Wastewater. <i>Environmental Science & Environmental Science and Technology Letters, 2019, 6, 492-498 Comparing the effectiveness of shared versus private latrines in preventing trachoma in rural</i>	11	12
7 ² 7 ¹ 7 ⁰	Nanofiltration Membranes with Tailored Selectivity. <i>ACS ES&T Engineering</i> , 2021 , 1, 404-414 Electrochemical-Osmotic Process for Simultaneous Recovery of Electric Energy, Water, and Metals from Wastewater. <i>Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental Science and Technology Letters</i> , 2019 , 6, 492-498 Comparing the effectiveness of shared versus private latrines in preventing trachoma in rural Tanzania. <i>American Journal of Tropical Medicine and Hygiene</i> , 2010 , 82, 693-5 Derivation of the Theoretical Minimum Energy of Separation of Desalination Processes. <i>Journal of</i>	3.2	12 12 12

(2004-2019)

66	Silica Removal Using Magnetic Iron-Aluminum Hybrid Nanomaterials: Measurements, Adsorption Mechanisms, and Implications for Silica Scaling in Reverse Osmosis. <i>Environmental Science & Technology</i> , 2019 , 53, 13302-13311	10.3	11
65	Particulate and THM Precursor Removal with Ferric Chloride. <i>Journal of Environmental Engineering,</i> ASCE, 1999 , 125, 1054-1061	2	11
64	Colloidal stability of cellulose nanocrystals in aqueous solutions containing monovalent, divalent, and trivalent inorganic salts. <i>Journal of Colloid and Interface Science</i> , 2021 , 584, 456-463	9.3	11
63	Photo-electrochemical Osmotic System Enables Simultaneous Metal Recovery and Electricity Generation from Wastewater. <i>Environmental Science & Environmental Science & Environm</i>	10.3	11
62	Salt and Water Transport in Reverse Osmosis Membranes: Beyond the Solution-Diffusion Model. <i>Environmental Science & Environmental Science & Environme</i>	10.3	10
61	Membrane distillation assisted by heat pump for improved desalination energy efficiency. <i>Desalination</i> , 2020 , 496, 114694	10.3	10
60	Electrospun silica nanofiber mats functionalized with ceria nanoparticles for water decontamination <i>RSC Advances</i> , 2019 , 9, 19408-19417	3.7	9
59	Complexation between dissolved silica and alginate molecules: Implications for reverse osmosis membrane fouling. <i>Journal of Membrane Science</i> , 2020 , 605, 118109	9.6	9
58	Reply to Comment on Breakdown of Colloid Filtration Theory: Role of the Secondary Energy Minimum and Surface Charge Heterogeneities. <i>Langmuir</i> , 2005 , 21, 10896-10897	4	9
57	Tutorial review of reverse osmosis and electrodialysis. <i>Journal of Membrane Science</i> , 2022 , 647, 120221	9.6	8
56	Recent Developments in Forward Osmosis Processes. Water Intelligence Online, 2017, 16, 97817804081	25	7
55	Biogas sparging to control fouling and enhance resource recovery from anaerobically digested sludge centrate by forward osmosis. <i>Journal of Membrane Science</i> , 2021 , 625, 119176	9.6	7
54	Enhanced Photocatalytic Water Decontamination by Micro-Nano Bubbles: Measurements and Mechanisms. <i>Environmental Science & Enhanced Science & Environmental Science & Environm</i>	10.3	7
53	True driving force and characteristics of water transport in osmotic membranes. <i>Desalination</i> , 2021 , 520, 115360	10.3	7
52	Surface cell density effects on Escherichia coli gene expression during cell attachment. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	6
51	Relationship between distance to social gathering facilities and risk of trachoma for households in rural Tanzanian communities. <i>Social Science and Medicine</i> , 2011 , 73, 1-5	5.1	6
50	Influence of Growth Phase on Bacterial Deposition: Interaction Mechanisms in Packed-Bed Column and Radial Stagnation Point Flow Systems. <i>Environmental Science & Environmental Science & Environmenta</i>	36 ^{10.3}	6
49	Natural organic matter fouling and chemical cleaning of nanofiltration membranes. Water Science and Technology: Water Supply, 2004 , 4, 245-251	1.4	6

48	Shear-Induced Reorganization of Deformable Molecular Assemblages: ☐Monte Carlo Studies. <i>Langmuir</i> , 2001 , 17, 552-561	4	6
47	Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores <i>Science Advances</i> , 2022 , 8, eabl5771	14.3	6
46	Energy-efficient water purification made possible by Yale engineers. <i>Membrane Technology</i> , 2009 , 2009, 10-11	1.8	5
45	Perfect divalent cation selectivity with capacitive deionization Water Research, 2021, 210, 117959	12.5	5
44	Doing nano-enabled water treatment right: sustainability considerations from design and research through development and implementation. <i>Environmental Science: Nano</i> , 2020 , 7, 3255-3278	7.1	5
43	Viability of Harvesting Salinity Gradient (Blue) Energy by Nanopore-Based Osmotic Power Generation. <i>Engineering</i> , 2021 ,	9.7	5
42	Comparison of Energy Consumption of Osmotically Assisted Reverse Osmosis and Low-Salt-Rejection Reverse Osmosis for Brine Management. <i>Environmental Science & Environmental &</i>	10.3	5
41	Electrical properties of interfaces 1995 , 9-32		4
40	Engineered Nanoconfinement Accelerating Spontaneous Manganese-Catalyzed Degradation of Organic Contaminants. <i>Environmental Science & Environmental Sc</i>	10.3	4
39	Nanoscale Thickness Control of Nanoporous Films Derived from Directionally Photopolymerized Mesophases. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001977	4.6	4
38	Optimal design of a microthermoelectric cooler for microelectronics. <i>Microelectronics Journal</i> , 2011 , 42, 772-777	1.8	3
37	New parametrization method for salt permeability of reverse osmosis desalination membranes 2022 , 2, 100010		3
36	Precisely Engineered Photoreactive Titanium Nanoarray Coating to Mitigate Biofouling in Ultrafiltration. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 9975-9984	9.5	3
35	Design principles and challenges of bench-scale high-pressure reverse osmosis up to 150lbar. <i>Desalination</i> , 2021 , 517, 115237	10.3	3
34	Informal Small-Scale Water Services in Developing Countries: The Business of Water for Those without Formal Municipal Connections231-240		3
33	Shape-Dependent Interactions of Manganese Oxide Nanomaterials with Lipid Bilayer Vesicles. <i>Langmuir</i> , 2019 , 35, 13958-13966	4	2
32	Low flow data logger in membrane distillation: An interdisciplinary laboratory in process control 2014 ,		2
31	Response to Comment on Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media (Environmental Science & Eamp; Technology, 2005, 39, 5496-5497)	10.3	2

Electrical properties of interfaces 1995, 9-32 30 2 Deposition of Colloids in Porous Media. ACS Symposium Series, 1992, 26-39 29 0.4 2 Selective Fluoride Transport in Subnanometer TiO Pores. ACS Nano, 2021, 15, 16828-16838 28 16.7 Selective and sensitive environmental gas sensors enabled by membrane overlayers. Trends in 14.8 27 Chemistry, 2021, 3, 547-560 Correlation equation for evaluating energy consumption and process performance of brackish 26 10.3 2 water desalination by electrodialysis. Desalination, 2021, 510, 115089 Designing polymeric membranes with coordination chemistry for high-precision ion separations.. 25 2 14.3 Science Advances, 2022, 8, eabm9436 Distinct impacts of natural organic matter and colloidal particles on gypsum crystallization.. Water 24 12.5 2 Research, 2022, 218, 118500 Studying water and solute transport through desalination membranes via neutron radiography. 23 9.6 Journal of Membrane Science, 2018, 548, 667-675 A Novel, Safe, and Environmentally Friendly Technology for Water Production Through Recovery of 2.2 1 Rejected Thermal Energy From Nuclear Power Plants 2006, 355 Modelling of particle deposition onto ideal collectors 1995, 113-156 21 1 Theoretical predictions compared to experimental observations in particle deposition kinetics 1995 20 1 , 310-343 Modelling of particle deposition onto ideal collectors 1995, 113-156 19 18 Experimental techniques in particle deposition kinetics 1995, 290-309 1 Experimental techniques in particle deposition kinetics 1995, 290-309 17 Discussion of Colloid Filtration in Fluidized Beds[by George Sprouse and Bruce E. Rittmann 16 1 (March/April 1990, Vol. 116, No. 2). Journal of Environmental Engineering, ASCE, 1991, 117, 706-708 Joule-Heated Layered Double Hydroxide Sponge for Rapid Removal of Silica from Water. 15 10.3 Environmental Science & Environmental Module-scale analysis of low-salt-rejection reverse osmosis: Design guidelines and system 14 12.5 1 performance.. Water Research, 2021, 209, 117936 Tethered electrolyte active-layer membranes. Journal of Membrane Science, 2022, 642, 120004 9.6 13

12	Comment on Techno-economic analysis of capacitive and intercalative water deionization by M. Metzger, M. Besli, S. Kuppan, S. Hellstrom, S. Kim, E. Sebti, C. Subban and J. Christensen, Energy Environ. Sci., 2020, 13, 1544. <i>Energy and Environmental Science</i> , 2021 , 14, 2494-2498	35.4	1
11	Chlorine-Resistant Epoxide-Based Membranes for Sustainable Water Desalination. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 818-824	11	1
10	Reply to "A resurrection of the Haber-Weiss reaction" <i>Nature Communications</i> , 2022 , 13, 395	17.4	0
9	Development of a Megasonic System for Cleaning Flat Panel Display. <i>Solid State Phenomena</i> , 2012 , 187, 181-184	0.4	
8	In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. <i>Advances in Colloid and Interface Science</i> , 2003 , 107, 83-83	14.3	
7	Transport of colloidal materials in ground water 1995 , 361-375		
6	Experimental techniques for aggregation studies 1995 , 263-289		
5	Experimental techniques for aggregation studies 1995 , 263-289		
4	Theoretical predictions compared to experimental observations in particle deposition kinetics 1995 , 310-343		
3	Transport of colloidal materials in ground water 1995 , 361-375		
2	Dynamics of colloid deposition in porous media: modeling the role of retained particles 1993 , 49-63		
1	Laser Interferometry for Precise Measurement of Ultralow Flow Rates from Permeable Materials. <i>Environmental Science and Technology Letters</i> , 2022 , 9, 233-238	11	