
Javier Estévez Gualda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9185295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time resolution of rain gauge data and its hydrological role. , 2022, , 171-216.		Ο
2	Areal reduction factor estimate for extreme rainfall events. , 2022, , 285-306.		1
3	AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models. Agronomy, 2022, 12, 656.	1.3	9
4	A Simple Scaling Analysis of Rainfall in Andalusia (Spain) under Different Precipitation Regimes. Water (Switzerland), 2022, 14, 1303.	1.2	6
5	A quality control procedure for long-term series of daily precipitation data in a semiarid environment. Theoretical and Applied Climatology, 2022, 149, 1029-1041.	1.3	4
6	New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agricultural Water Management, 2021, 245, 106558.	2.4	37
7	A Review on Rainfall Data Resolution and Its Role in the Hydrological Practice. Water (Switzerland), 2021, 13, 1012.	1.2	8
8	Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions. Applied Energy, 2021, 298, 117211.	5.1	25
9	Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain. Atmosphere, 2021, 12, 1158.	1.0	17
10	Effect of Time-Resolution of Rainfall Data on Trend Estimation for Annual Maximum Depths with a Duration of 24 Hours. Water (Switzerland), 2021, 13, 3264.	1.2	3
11	Innovative Student Response System Methodologies for Civil Engineering Practical Lectures. Technology, Knowledge and Learning, 2020, 25, 835-852.	3.1	4
12	Monthly Precipitation Forecasts Using Wavelet Neural Networks Models in a Semiarid Environment. Water (Switzerland), 2020, 12, 1909.	1.2	21
13	Assessing the Best Gap-Filling Technique for River Stage Data Suitable for Low Capacity Processors and Real-Time Application Using IoT. Sensors, 2020, 20, 6354.	2.1	8
14	The history of rainfall data time-resolution in a wide variety of geographical areas. Journal of Hydrology, 2020, 590, 125258.	2.3	29
15	Assessing Inhomogeneities in Extreme Annual Rainfall Data Series by Multifractal Approach. Water (Switzerland), 2020, 12, 1030.	1.2	13
16	Assessing Neural Network Approaches for Solar Radiation Estimates Using Limited Climatic Data in the Mediterranean Sea. Environmental Sciences Proceedings, 2020, 4, .	0.3	2
17	Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets. Chaos, 2019, 29, 063105.	1.0	9
18	Multifractal analysis to study break points in temperature data sets. Chaos, 2019, 29, 093116.	1.0	5

JAVIER ESTéVEZ GUALDA

#	Article	IF	CITATIONS
19	On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. Journal of Hydrology, 2019, 575, 1267-1279.	2.3	17
20	Multifractal Characterization of Seismic Activity in the Provinces of Esmeraldas and ManabÃ , Ecuador. Proceedings (mdpi), 2019, 24, 27.	0.2	1
21	Introduction to the special issue on "hydro-meteorological time series analysis and their relation to climate changeâ€: Acta Geophysica, 2018, 66, 317-318.	1.0	4
22	Spatial regression test for ensuring temperature data quality in southern Spain. Theoretical and Applied Climatology, 2018, 131, 309-318.	1.3	13
23	Influence of temporal data aggregation on trend estimation for intense rainfall. Advances in Water Resources, 2018, 122, 304-316.	1.7	27
24	Characteristics of the Underestimation Error of Annual Maximum Rainfall Depth Due to Coarse Temporal Aggregation. Atmosphere, 2018, 9, 303.	1.0	8
25	Obtaining Homogeneous Regions by Determining the Generalized Fractal Dimensions of Validated Daily Rainfall Data Sets. Water Resources Management, 2017, 31, 2333-2348.	1.9	11
26	Effect of temporal aggregation on the estimate of annual maximum rainfall depths for the design of hydraulic infrastructure systems. Journal of Hydrology, 2017, 554, 710-720.	2.3	30
27	The identification of an appropriate Minimum Interâ€event Time (MIT) based on multifractal characterization of rainfall data series. Hydrological Processes, 2016, 30, 3507-3517.	1.1	23
28	Quality assurance procedures for validating meteorological input variables of reference evapotranspiration in mendoza province (Argentina). Agricultural Water Management, 2016, 172, 96-109.	2.4	24
29	Detection of spurious precipitation signals from automatic weather stations in irrigated areas. International Journal of Climatology, 2015, 35, 1556-1568.	1.5	16
30	The use of the exponentK(q)function to delimit homogeneous regions in regional frequency analysis of extreme annual daily rainfall. Hydrological Processes, 2015, 29, 139-151.	1.1	6
31	Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. Journal of Hydrology, 2015, 529, 106-119.	2.3	22
32	A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an "at-site―Regional Frequency Analysis: Application at Mediterranean Climate Locations. Water Resources Management, 2015, 29, 3243-3263.	1.9	9
33	Local Analysis of the Characteristics and Frequency of Extreme Droughts in Málaga Using the SPI (Standardized Precipitation Index). Lecture Notes in Management and Industrial Engineering, 2015, , 167-179.	0.3	3
34	A new quality control procedure based on non-linear autoregressive neural network for validating raw river stage data. Journal of Hydrology, 2014, 510, 103-109.	2.3	16
35	Hydrology and its role in water engineering. IngenierÃa Del Agua, 2014, 18, 1.	0.2	4
36	Selecting the best IDF model by using the multifractal approach. Hydrological Processes, 2013, 27, 433-443.	1.1	31

#	Article	IF	CITATIONS
37	Multifractal analysis of validated wind speed time series. Chaos, 2013, 23, 013133.	1.0	20
38	Evaluation and Regional Calibration of Solar Radiation Prediction Models in Southern Spain. Journal of Irrigation and Drainage Engineering - ASCE, 2012, 138, 868-879.	0.6	17
39	Regional analysis of the annual maximum daily rainfall in the province of Malaga (southern Spain) using the principal component analysis. Water and Environment Journal, 2011, 25, 522-531.	1.0	16
40	Guidelines on validation procedures for meteorological data from automatic weather stations. Journal of Hydrology, 2011, 402, 144-154.	2.3	130
41	Data validation procedures in agricultural meteorology – a prerequisite for their use. Advances in Science and Research, 2011, 6, 141-146.	1.0	7
42	Sensitivity analysis of a Penman–Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrological Processes, 2009, 23, 3342-3353.	1.1	88
43	Comparison of Standardized Reference Evapotranspiration Equations in Southern Spain. Journal of Irrigation and Drainage Engineering - ASCE, 2008, 134, 1-12.	0.6	73