
Laia Andreu-Hayles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9185293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 2011, 6, 045509.	2.2	1,021
2	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	8.1	447
3	Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.	4.7	403
4	Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change, 2015, 5, 579-583.	8.1	357
5	Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications, 2020, 11, 4621.	5.8	201
6	Signal strength and climate calibration of a European treeâ€ring isotope network. Geophysical Research Letters, 2007, 34, .	1.5	180
7	Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Global Change Biology, 2011, 17, 2095-2112.	4.2	179
8	Spatial variability and temporal trends in waterâ€use efficiency of European forests. Global Change Biology, 2014, 20, 3700-3712.	4.2	175
9	A novel approach for the homogenization of cellulose to use microâ€amounts for stable isotope analyses. Rapid Communications in Mass Spectrometry, 2009, 23, 1934-1940.	0.7	156
10	Distribution Limit. Climatic Change, 2006, 79, 289-313.	1.7	147
11	Distinct effects of climate warming on populations of silver fir (<i>Abies alba</i>) across Europe. Journal of Biogeography, 2015, 42, 1150-1162.	1.4	140
12	Assessing forest vulnerability to climate warming using a processâ€based model of tree growth: bad prospects for rearâ€edges. Global Change Biology, 2017, 23, 2705-2719.	4.2	128
13	Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology, 2007, 13, 070228013259001-???.	4.2	110
14	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	9.0	98
15	Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past, 2017, 13, 1851-1900.	1.3	93
16	Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10142-E10150.	3.3	92
17	Past and future drought in Mongolia. Science Advances, 2018, 4, e1701832.	4.7	91
18	Tree-Ring-Reconstructed Summer Temperatures from Northwestern North America during the Last Nine Centuries*. Journal of Climate, 2013, 26, 3001-3012.	1.2	82

LAIA ANDREU-HAYLES

#	Article	IF	CITATIONS
19	Varying boreal forest response to Arctic environmental change at the Firth River, Alaska. Environmental Research Letters, 2011, 6, 045503.	2.2	65
20	Pooled versus separate measurements of tree-ring stable isotopes. Science of the Total Environment, 2011, 409, 2244-2251.	3.9	63
21	Matching Dendrochronological Dates with the Southern Hemisphere ¹⁴ C Bomb Curve to Confirm Annual Tree Rings in <i>Pseudolmedia rigida</i> from Bolivia. Radiocarbon, 2015, 57, 1-13.	0.8	54
22	Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire. Quaternary Science Reviews, 2016, 131, 33-50.	1.4	54
23	A large-scale coherent signal of canopy status in maximum latewood density of tree rings at arctic treeline in North America. Global and Planetary Change, 2013, 100, 109-118.	1.6	48
24	Climatic significance of tree-ring width and δ ¹³ C in a Spanish pine forest network. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 771.	0.8	46
25	Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition. Scientific Reports, 2017, 7, 46158.	1.6	44
26	Response of Pinus leucodermis to climate and anthropogenic activity in the National Park of Pollino (Basilicata, Southern Italy). Biological Conservation, 2007, 137, 507-519.	1.9	43
27	Improved dendroclimatic calibration using blue intensity in the southern Yukon. Holocene, 2019, 29, 1817-1830.	0.9	42
28	Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale. Nature Communications, 2019, 10, 742.	5.8	42
29	Age effects and climate response in trees: a multi-proxy tree-ring test in old-growth life stages. European Journal of Forest Research, 2012, 131, 933-944.	1.1	38
30	Dendrochronological study of the Canal del Roc Roig avalanche path: first results of the Aludex project in the Pyrenees. Annals of Glaciology, 2004, 38, 173-179.	2.8	36
31	A high yield cellulose extraction system for small whole wood samples and dual measurement of carbon and oxygen stable isotopes. Chemical Geology, 2019, 504, 53-65.	1.4	36
32	Spatioâ€ŧemporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate. Global Ecology and Biogeography, 2019, 28, 1295-1309.	2.7	35
33	Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska. Climate of the Past, 2017, 13, 1007-1022.	1.3	34
34	Environmental Stress and Steppe Nomads: Rethinking the History of the Uyghur Empire (744–840) with Paleoclimate Data. Journal of Interdisciplinary History, 2018, 48, 439-463.	0.0	25
35	400 Years of summer hydroclimate from stable isotopes in Iberian trees. Climate Dynamics, 2017, 49, 143-161.	1.7	24
36	Radiocarbon analysis confirms annual periodicity in Cedrela odorata tree rings from the equatorial Amazon. Quaternary Geochronology, 2020, 58, 101079.	0.6	23

LAIA ANDREU-HAYLES

#	Article	IF	CITATIONS
37	Different climate sensitivity for radial growth, but uniform for tree-ring stable isotopes along an aridity gradient in <i>Polylepis tarapacana</i> , the world's highest elevation tree species. Tree Physiology, 2021, 41, 1353-1371.	1.4	23
38	A narrow window of summer temperatures associated with shrub growth in Arctic Alaska. Environmental Research Letters, 2020, 15, 105012.	2.2	23
39	Distinct xylem responses to acute vs prolonged drought in pine trees. Tree Physiology, 2020, 40, 605-620.	1.4	20
40	Eight-hundred years of summer temperature variations in the southeast of the Iberian Peninsula reconstructed from tree rings. Climate Dynamics, 2015, 44, 75-93.	1.7	18
41	The unknown third – Hydrogen isotopes in tree-ring cellulose across Europe. Science of the Total Environment, 2022, 813, 152281.	3.9	18
42	Aged but withstanding: Maintenance of growth rates in old pines is not related to enhanced water-use efficiency. Agricultural and Forest Meteorology, 2017, 243, 43-54.	1.9	16
43	Dendrochronological Dating of the World Trade Center Ship, Lower Manhattan, New York City. Tree-Ring Research, 2014, 70, 65-77.	0.4	15
44	Interannual variations in needle and sapwood traits of <i>Pinus edulis</i> branches under an experimental drought. Ecology and Evolution, 2018, 8, 1655-1672.	0.8	15
45	Accelerated Recent Warming and Temperature Variability Over the Past Eight Centuries in the Central Asian Altai From Blue Intensity in Tree Rings. Geophysical Research Letters, 2021, 48, e2021GL092933.	1.5	15
46	Nonannual tree rings in a climateâ€sensitive <i>Prioria copaifera</i> chronology in the Atrato River, Colombia. Ecology and Evolution, 2017, 7, 6334-6345.	0.8	14
47	Intraâ€Annual Climate Anomalies in Northwestern North America Following the 1783–1784 CE Laki Eruption. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033544.	1.2	14
48	Biogeographic, Atmospheric, and Climatic Factors Influencing Tree Growth in Mediterranean Aleppo Pine Forests. Forests, 2020, 11, 736.	0.9	12
49	Traumatic Resin Ducts in Alaska Mountain Hemlock Trees Provide a New Proxy for Winter Storminess. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1923-1938.	1.3	11
50	Potential to explain climate from tree rings in the south of the Iberian Peninsula. Climate Research, 2012, 55, 119-134.	0.4	11
51	Tree-ring cellulose δ180 records similar large-scale climate influences as precipitation δ180 in the Northwest Territories of Canada. Climate Dynamics, 2022, 58, 759-776.	1.7	10
52	Hydroclimate and ENSO Variability Recorded by Oxygen Isotopes From Tree Rings in the South American Altiplano. Geophysical Research Letters, 2022, 49, .	1.5	10
53	Using vegetation to characterize the avalanche of Canal del Roc Roig, Vall de Núria, eastern Pyrenees, Spain. Annals of Glaciology, 2004, 38, 159-165.	2.8	8
54	Tussocks Enduring or Shrubs Greening: Alternate Responses to Changing Fire Regimes in the Noatak River Valley, Alaska. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006009.	1.3	8

LAIA ANDREU-HAYLES

#	Article	IF	CITATIONS
55	High ENSO sensitivity in tree rings from a northern population of Polylepis tarapacana in the Peruvian Andes. Dendrochronologia, 2022, 71, 125902.	1.0	8
56	Timing and Potential Causes of 19th-Century Glacier Advances in Coastal Alaska Based on Tree-Ring Dating and Historical Accounts. Frontiers in Earth Science, 2019, 7, .	0.8	7
57	Limits and Strengths of Tree-Ring Stable Isotopes. Tree Physiology, 2022, , 399-428.	0.9	7
58	Climatic signal from Pinus leucodermis axial resin ducts: a tree-ring time series approach. European Journal of Forest Research, 2017, 136, 27-36.	1.1	5
59	Stripâ€Bark Morphology and Radial Growth Trends in Ancient <i>Pinus sibirica</i> Trees From Central Mongolia. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 945-959.	1.3	4
60	A new snow module improves predictions of the isotope-enabled MAIDENiso forest growth model. Geoscientific Model Development, 2022, 15, 1931-1952.	1.3	2
61	Tree-ring isotopes from Araucaria araucana as useful proxies for climate reconstructions. Dendrochronologia, 2022, 74, 125979.	1.0	1
62	Dendrochronology, Progress. , 2014, , 1-12.		0
63	Dendrochronology, Progress. Encyclopedia of Earth Sciences Series, 2015, , 207-213.	0.1	0