Yui Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9185237/publications.pdf Version: 2024-02-01

VIII SASAKI

#	Article	IF	CITATIONS
1	A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection. Frontiers of Chemical Science and Engineering, 2022, 16, 72-80.	4.4	13
2	Supramolecular optical sensor arrays for on-site analytical devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100475.	11.6	17
3	Multi-Oxyanion Detection by an Organic Field-Effect Transistor with Pattern Recognition Techniques and Its Application to Quantitative Phosphate Sensing in Human Blood Serum. ACS Applied Materials & Interfaces, 2022, 14, 22903-22911.	8.0	17
4	Freshness monitoring of raw fish by detecting biogenic amines using a gold nanoparticle-based colorimetric sensor array. RSC Advances, 2022, 12, 6803-6810.	3.6	16
5	A microfluidic organic transistor for reversible and real-time monitoring of H ₂ O ₂ at ppb/ppt levels in ultrapure water. Chemical Communications, 2022, 58, 5721-5724.	4.1	4
6	Oxytocin detection at ppt level in human saliva by an extended-gate-type organic field-effect transistor. Analyst, The, 2022, 147, 1055-1059.	3.5	15
7	Printed 384â€Well Microtiter Plate on Paper for Fluorescent Chemosensor Arrays in Food Analysis. Chemistry - an Asian Journal, 2022, 17, .	3.3	7
8	An organic transistor for the selective detection of tropane alkaloids utilizing a molecularly imprinted polymer. Journal of Materials Chemistry B, 2022, 10, 6808-6815.	5.8	9
9	Easy-to-Prepare Mini-Chemosensor Array for Simultaneous Detection of Cysteine and Glutathione Derivatives. ACS Applied Bio Materials, 2021, 4, 2113-2119.	4.6	14
10	Molecular self-assembled chemosensors and their arrays. Coordination Chemistry Reviews, 2021, 429, 213607.	18.8	49
11	96-Well Microtiter Plate Made of Paper: A Printed Chemosensor Array for Quantitative Detection of Saccharides. Analytical Chemistry, 2021, 93, 1179-1184.	6.5	40
12	Extended-gate-type Organic Field-effect Transistors for the Detection of Potential Psychological Stress Markers. Sensors and Materials, 2021, 33, 211.	0.5	0
13	Detection of polyamines by an extended gate-type organic transistor functionalized with a carboxylate attached 1,3,4-thiadiazole derivative. Journal of Materials Chemistry C, 2021, 9, 11690-11697.	5.5	8
14	A Printed Paperâ€Based Anion Sensor Array for Multiâ€Analyte Classification: Onâ€Site Quantification of Glyphosate. ChemPlusChem, 2021, 86, 798-802.	2.8	15
15	Indicator Displacement Assay-based Chemosensor Arrays for Saccharides using Off-the-shelf Materials toward Simultaneous On-site Detection on Paper. Chemistry Letters, 2021, 50, 987-995.	1.3	5
16	Toward Food Freshness Monitoring: Coordination Binding–Based Colorimetric Sensor Array for Sulfur-Containing Amino Acids. Frontiers in Chemistry, 2021, 9, 685783.	3.6	11
17	Toward the Realization of Organic Transistor-Based Ubiquitous Chemical Sensors. Journal of Japan Institute of Electronics Packaging, 2021, 24, 361-368.	0.1	0
18	Polythiophene-Based Chemical Sensors: Toward On-Site Supramolecular Analytical Devices. Bulletin of the Chemical Society of Japan, 2021, 94, 2613-2622.	3.2	15

Yui Sasaki

#	Article	IF	CITATIONS
19	On-site Chemosensor Arrays for Qualitative and Quantitative Detection with Imaging Analysis. Bunseki Kagaku, 2021, 70, 691-702.	0.2	0
20	An extended-gate type organic transistor with a solution-processable small molecule semiconductor capable of detecting glutathione in water. Japanese Journal of Applied Physics, 2020, 59, SGGC07.	1.5	5
21	A Waterâ€Gated Organic Thinâ€Film Transistor for Glyphosate Detection: A Comparative Study with Fluorescence Sensing. Chemistry - A European Journal, 2020, 26, 14506-14506.	3.3	1
22	A Waterâ€Gated Organic Thinâ€Film Transistor for Glyphosate Detection: A Comparative Study with Fluorescence Sensing. Chemistry - A European Journal, 2020, 26, 14525-14529.	3.3	17
23	Protein Assays on Organic Electronics: Rational Device and Material Designs for Organic Transistorâ€Based Sensors. ChemistryOpen, 2020, 9, 573-581.	1.9	5
24	Fluorescence Anion Chemosensor Array Based on Pyrenylboronic Acid. Frontiers in Chemistry, 2020, 8, 414.	3.6	12
25	Porous microneedles on a paper for screening test of prediabetes. Medical Devices & Sensors, 2020, 3, e10109.	2.7	32
26	Supramolecular Sensor for Astringent Procyanidin C1: Fluorescent Artificial Tongue for Wine Components. Chemistry - A European Journal, 2020, 26, 16236-16240.	3.3	16
27	Accurate chiral pattern recognition for amines from just a single chemosensor. Chemical Science, 2020, 11, 3790-3796.	7.4	34
28	Microfluidic System with Extendedâ€Gateâ€Type Organic Transistor for Realâ€Time Glucose Monitoring. ChemElectroChem, 2020, 7, 1332-1336.	3.4	23
29	Sensitive Detection of Glyphosate By a Water-Gated Organic Transistor. ECS Meeting Abstracts, 2020, MA2020-01, 1879-1879.	0.0	0
30	Sensitive Detection of Glyphosate by a Water-Gated Organic Transistor. ECS Transactions, 2020, 98, 41-46.	0.5	1
31	Sensitive Detection of Glyphosate by a Water-Gated Organic Transistor. ECS Meeting Abstracts, 2020, MA2020-02, 3380-3380.	0.0	0
32	Development of polymer field-effect transistor-based immunoassays. Polymer Journal, 2019, 51, 1-9.	2.7	16
33	Facile Indicator Displacement Assay-based Supramolecular Chemosensor: Quantitative Colorimetric Determination of Xylose and Glucose in the Presence of Ascorbic Acid. Chemistry Letters, 2019, 48, 1368-1370.	1.3	6
34	Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sensors, 2019, 4, 2571-2587.	7.8	62
35	Simple Colorimetric Chemosensor Array for Oxyanions: Quantitative Assay for Herbicide Glyphosate. Analytical Chemistry, 2019, 91, 13627-13632.	6.5	46
36	A Saccharide Chemosensor Array Developed Based on an Indicator Displacement Assay Using a Combination of Commercially Available Reagents. Frontiers in Chemistry, 2019, 7, 49.	3.6	23

Yui Sasaki

#	Article	IF	CITATIONS
37	Simplest Chemosensor Array for Phosphorylated Saccharides. Analytical Chemistry, 2019, 91, 15570-15576.	6.5	30
38	Development of Enzymatic Sensors Based on Extended-gate-type Organic Field-effect Transistors. Electrochemistry, 2018, 86, 303-308.	1.4	18
39	Fabrication of Supramolecular Sensor Arrays Using Intramolecular/Intermolecular Interactions. Bunseki Kagaku, 2018, 67, 519-529.	0.2	1
40	An electrolyte-gated polythiophene transistor for the detection of biogenic amines in water. Chemical Communications, 2018, 54, 6907-6910.	4.1	31
41	Development of Supramolecular Sensor Devices Based on Organic Transistors. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 1086-1097.	0.1	1
42	A molecular self-assembled colourimetric chemosensor array for simultaneous detection of metal ions in water. Chemical Communications, 2017, 53, 6561-6564.	4.1	52
43	Labelâ€Free Direct Electrical Detection of a Histidineâ€Rich Protein with Subâ€Femtomolar Sensitivity using an Organic Fieldâ€Effect Transistor. ChemistryOpen, 2017, 6, 472-475.	1.9	35
44	An Organic Transistor-based Electrical Assay for Copper(II) in Water. Electrochemistry, 2017, 85, 775-778.	1.4	15
45	Label-Free Detection of Human Glycoprotein (CgA) Using an Extended-Gated Organic Transistor-Based Immunosensor. Sensors, 2016, 16, 2033.	3.8	29
46	Selective nitrate detection by an enzymatic sensor based on an extended-gate type organic field-effect transistor. Biosensors and Bioelectronics, 2016, 81, 87-91.	10.1	73
47	An Organic Field-effect Transistor with an Extended-gate Electrode Capable of Detecting Human Immunoglobulin A. Analytical Sciences, 2015, 31, 725-728.	1.6	32
48	A mercury(<scp>ii</scp>) ion sensor device based on an organic field effect transistor with an extended-gate modified by dipicolylamine. Chemical Communications, 2015, 51, 17666-17668.	4.1	51