
David Styles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9185183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crafty Marketing: An Evaluation of Distinctive Criteria for "Craft―Beer. Food Reviews International, 2022, 38, 913-929.	4.3	18
2	Rice-crayfish coculture delivers more nutrition at a lower environmental cost. Sustainable Production and Consumption, 2022, 29, 14-24.	5.7	29
3	Circular use of feed by-products from alcohol production mitigates water scarcity. Sustainable Production and Consumption, 2022, 30, 158-170.	5.7	11
4	Improving nutrient and economic efficiency of dairy intensification depends on intensive use of scattered cropland. Sustainable Production and Consumption, 2022, 30, 454-466.	5.7	2
5	Climate mitigation efficacy of anaerobic digestion in a decarbonising economy. Journal of Cleaner Production, 2022, 338, 130441.	4.6	10
6	Packaging choice and coordinated distribution logistics to reduce the environmental footprint of small-scale beer value chains. Journal of Environmental Management, 2022, 307, 114591.	3.8	16
7	Land-use change and valorisation of feedstock side-streams determine the climate mitigation potential of bioplastics. Resources, Conservation and Recycling, 2022, 180, 106185.	5.3	16
8	Responsible agriculture must adapt to the wetland character of midâ€latitude peatlands. Global Change Biology, 2022, 28, 3795-3811.	4.2	23
9	GOBLIN version 1.0: a land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting. Geoscientific Model Development, 2022, 15, 2239-2264.	1.3	8
10	Greenhouse gas mitigation and rural electricity generation by a novel two-stroke biogas engine. Journal of Cleaner Production, 2021, 280, 124473.	4.6	11
11	Thirsty work: Assessing the environmental footprint of craft beer. Sustainable Production and Consumption, 2021, 27, 242-253.	5.7	14
12	Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms. Reproduction, Fertility and Development, 2021, 33, 1.	0.1	15
13	The sustainability of riceâ€crayfish coculture systems: a mini review of evidence from Jianghan plain in China. Journal of the Science of Food and Agriculture, 2021, 101, 3843-3853.	1.7	31
14	Legume-Modified Rotations Deliver Nutrition With Lower Environmental Impact. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	14
15	Does Circular Reuse of Chickpea Cooking Water to Produce Vegan Mayonnaise Reduce Environmental Impact Compared with Egg Mayonnaise?. Sustainability, 2021, 13, 4726.	1.6	11
16	Substitution of beef with pea protein reduces the environmental footprint of meat balls whilst supporting health and climate stabilisation goals. Journal of Cleaner Production, 2021, 297, 126447.	4.6	41
17	Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resources, Conservation and Recycling, 2021, 168, 105451.	5.3	169
18	Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. Nature Communications, 2021, 12, 3831.	5.8	63

#	Article	IF	CITATIONS
19	Aligning efficiency benchmarking with sustainable outcomes in the United Kingdom water sector. Journal of Environmental Management, 2021, 287, 112317.	3.8	22
20	A Multifunctional Solution for Wicked Problems: Value-Chain Wide Facilitation of Legumes Cultivated at Bioregional Scales Is Necessary to Address the Climate-Biodiversity-Nutrition Nexus. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	17
21	Marginal Abatement Cost Curves for Latin American dairy production: A Costa Rica case study. Journal of Cleaner Production, 2021, 311, 127556.	4.6	8
22	Defining national biogenic methane targets: Implications for national food production & climate neutrality objectives. Journal of Environmental Management, 2021, 295, 113058.	3.8	12
23	Comparative life cycle assessment of plant and beef-based patties, including carbon opportunity costs. Sustainable Production and Consumption, 2021, 28, 936-952.	5.7	21
24	Environmental performance of bioplastic packaging on fresh food produce: A consequential life cycle assessment. Journal of Cleaner Production, 2021, 317, 128377.	4.6	34
25	Pitfalls in international benchmarking of energy intensity across wastewater treatment utilities. Journal of Environmental Management, 2021, 300, 113613.	3.8	14
26	Optimized ratoon rice system to sustain cleaner food production in Jianghan Plain, China: a comprehensive emergy assessment. Environmental Science and Pollution Research, 2021, , 1.	2.7	3
27	Introducing a Calculator for the Environmental and Financial Potential of Drain Water Heat Recovery in Commercial Kitchens. Water (Switzerland), 2021, 13, 3486.	1.2	5
28	Consequential life cycle assessment of miscanthus livestock bedding, diverting straw to bioelectricity generation. GCB Bioenergy, 2020, 12, 39-53.	2.5	5
29	Comparing the environmental efficiency of milk and beef production through life cycle assessment of interconnected cattle systems. Journal of Cleaner Production, 2020, 277, 124108.	4.6	43
30	Maintaining production while reducing local and global environmental emissions in dairy farming. Journal of Environmental Management, 2020, 272, 111054.	3.8	17
31	Key performance indicators to explain energy & economic efficiency across water utilities, and identifying suitable proxies. Journal of Environmental Management, 2020, 269, 110810.	3.8	36
32	Recycling of European plastic is a pathway for plastic debris in the ocean. Environment International, 2020, 142, 105893.	4.8	83
33	Emissions down the drain: Balancing life cycle energy and greenhouse gas savings with resource use for heat recovery from kitchen drains. Journal of Environmental Management, 2020, 271, 110988.	3.8	12
34	Substituting wheat with chickpea flour in pasta production delivers more nutrition at a lower environmental cost. Sustainable Production and Consumption, 2020, 24, 26-38.	5.7	34
35	Region-specific emission factors for Brazil increase the estimate of nitrous oxide emissions from nitrogen fertiliser application by 21%. Atmospheric Environment, 2020, 230, 117506.	1.9	23
36	Afforestation: Replacing livestock emissions with carbon sequestration. Journal of Environmental Management, 2020, 264, 110523.	3.8	18

#	Article	IF	CITATIONS
37	Data for life cycle assessment of legume biorefining for alcohol. Data in Brief, 2019, 25, 104242.	0.5	4
38	Diversification not specialization reduces global and local environmental burdens from livestock production. Environment International, 2019, 132, 104837.	4.8	8
39	Implementation solutions for greenhouse gas mitigation measures in livestock agriculture: A framework for coherent strategy. Environmental Science and Policy, 2019, 101, 232-244.	2.4	3
40	A life cycle assessment of the construction phase of eleven micro-hydropower installations in the UK. Journal of Cleaner Production, 2019, 218, 1-9.	4.6	22
41	Just the tonic! Legume biorefining for alcohol has the potential to reduce Europe's protein deficit and mitigate climate change. Environment International, 2019, 130, 104870.	4.8	24
42	Economic and environmental efficiency of UK and Ireland water companies: Influence of exogenous factors and rurality. Journal of Environmental Management, 2019, 241, 363-373.	3.8	39
43	Challenges to implementing greenhouse gas mitigation measures in livestock agriculture: A conceptual framework for policymakers. Environmental Science and Policy, 2019, 92, 107-115.	2.4	17
44	Adapting Standâ€Alone Renewable Energy Technologies for the Circular Economy through Ecoâ€Đesign and Recycling. Journal of Industrial Ecology, 2019, 23, 133-140.	2.8	49
45	Closing nutrient loops through decentralized anaerobic digestion of organic residues in agricultural regions: A multi-dimensional sustainability assessment. Resources, Conservation and Recycling, 2018, 136, 110-117.	5.3	52
46	Construction and demolition waste best management practice in Europe. Resources, Conservation and Recycling, 2018, 136, 166-178.	5.3	467
47	Climate mitigation by dairy intensification depends on intensive use of spared grassland. Global Change Biology, 2018, 24, 681-693.	4.2	50
48	Effects of high-sugar grasses and improved manure management on the environmental footprint of milk production at the farm level. Journal of Cleaner Production, 2018, 202, 1241-1252.	4.6	19
49	Life Cycle Assessment of Biofertilizer Production and Use Compared with Conventional Liquid Digestate Management. Environmental Science & Technology, 2018, 52, 7468-7476.	4.6	68
50	Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresource Technology, 2018, 267, 732-742.	4.8	159
51	Metrics and methods for characterizing dairy farm intensification using farm survey data. PLoS ONE, 2018, 13, e0195286.	1.1	39
52	The Impact of Pay-As-You-Throw Schemes on Municipal Solid Waste Management: The Exemplar Case of the County of Aschaffenburg, Germany. Resources, 2017, 6, 8.	1.6	54
53	Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment. Energies, 2017, 10, 239.	1.6	23
54	Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment. Science of the Total Environment, 2016, 560-561, 241-253.	3.9	100

#	Article	IF	CITATIONS
55	Improving livestock production efficiencies presents a major opportunity to reduce sectoral greenhouse gas emissions. Agricultural Systems, 2016, 147, 123-131.	3.2	28
56	Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment. Ambio, 2016, 45, 872-884.	2.8	34
57	Consequential life cycle assessment of biogas, biofuel and biomass energy options within an arable crop rotation. GCB Bioenergy, 2015, 7, 1305-1320.	2.5	70
58	Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. European Journal of Soil Science, 2015, 66, 792-801.	1.8	96
59	Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower. Environmental Science & Technology, 2015, 49, 6344-6351.	4.6	24
60	Making green technology greener: Achieving a balance between carbon and resource savings through ecodesign in hydropower systems. Resources, Conservation and Recycling, 2015, 105, 11-17.	5.3	14
61	Life cycle environmental balance and greenhouse gas mitigation potential of micro-hydropower energy recovery in the water industry. Journal of Cleaner Production, 2015, 99, 152-159.	4.6	54
62	Inventory compilation for renewable energy systems: the pitfalls of materiality thresholds and priority impact categories using hydropower case studies. International Journal of Life Cycle Assessment, 2015, 20, 1701-1707.	2.2	6
63	Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms. GCB Bioenergy, 2015, 7, 1034-1049.	2.5	54
64	Water management in the European hospitality sector: Best practice, performance benchmarks and improvement potential. Tourism Management, 2015, 46, 187-202.	5.8	65
65	Assessing the impact of within crop heterogeneity (â€~patchiness') in young <i>Miscanthus</i> Â×Â <i>giganteus</i> fields on economic feasibility and soil carbon sequestration. GCB Bioenergy, 2014, 6, 566-576.	2.5	27
66	Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy, 2014, 16, 168-183.	0.7	103
67	Evidence on the environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map. Environmental Evidence, 2014, 3, .	1.1	40
68	Hemp: A more sustainable annual energy crop for climate and energy policy. Energy Policy, 2013, 58, 152-162.	4.2	100
69	Identified best environmental management practices to improve the energy performance of the retail trade sector in Europe. Energy Policy, 2013, 63, 982-994.	4.2	39
70	Environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map of the evidence. Environmental Evidence, 2013, 2, .	1.1	34
71	Environmental improvement of product supply chains: A review of European retailers' performance. Resources, Conservation and Recycling, 2012, 65, 57-78.	5.3	57
72	Environmental improvement of product supply chains: Proposed best practice techniques, quantitative indicators and benchmarks of excellence for retailers. Journal of Environmental Management, 2012, 110, 135-150.	3.8	29

#	Article	IF	CITATIONS
73	Using a Strategic Environmental Assessment framework to quantify the environmental impact of bioenergy plans. GCB Bioenergy, 2012, 4, 311-329.	2.5	15
74	Case study evidence that direct regulation remains the main driver of industrial pollution avoidance and may benefit operational efficiency. Journal of Cleaner Production, 2012, 21, 1-10.	4.6	41
75	A proposed framework for determining the environmental impact of replacing agricultural grassland with Miscanthus in Ireland. GCB Bioenergy, 2011, 3, 247-263.	2.5	26
76	Measuring the environmental performance of IPPC industry: I. Devising a quantitative science-based and policy-weighted Environmental Emissions Index. Environmental Science and Policy, 2009, 12, 226-242.	2.4	16
77	Measuring the environmental performance of IPPC industry: II. Applying the Environmental Emissions Index to quantify environmental performance trends from routinely reported data. Environmental Science and Policy, 2009, 12, 243-256.	2.4	10
78	A quantitative integrated assessment of pollution prevention achieved by Integrated Pollution Prevention Control licensing. Environment International, 2009, 35, 1177-1187.	4.8	27
79	Miscanthus and willow heat production—An effective land-use strategy for greenhouse gas emission avoidance in Ireland?. Energy Policy, 2008, 36, 97-107.	4.2	25
80	Energy crops in Ireland: An economic comparison of willow and Miscanthus production with conventional farming systems. Biomass and Bioenergy, 2008, 32, 407-421.	2.9	135
81	Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland. Environmental Science and Policy, 2008, 11, 294-306.	2.4	22
82	Meteorological and management influences on seasonal variation in phosphorus fractions extracted from soils in western Ireland. Geoderma, 2007, 142, 152-164.	2.3	22
83	Current and future financial competitiveness of electricity and heat from energy crops: A case study from Ireland. Energy Policy, 2007, 35, 4355-4367.	4.2	36
84	Energy crops in Ireland: Quantifying the potential life-cycle greenhouse gas reductions of energy-crop electricity. Biomass and Bioenergy, 2007, 31, 759-772.	2.9	119
85	Laboratory drying of organic-matter rich soils: Phosphorus solubility effects, influence of soil characteristics, and consequences for environmental interpretation. Geoderma, 2006, 136, 120-135.	2.3	46
86	Linking soil phosphorus to water quality in the Mask catchment of western Ireland through the analysis of moist soil samples. Agriculture, Ecosystems and Environment, 2006, 112, 300-312.	2.5	15
87	Importance of spatial and temporal patterns for assessment of risk of diffuse nutrient emissions to surface waters. Journal of Hydrology, 2005, 304, 183-192.	2.3	65
88	Bioenergy from "surplus―land: environmental and socio-economic implications. BioRisk, 0, 7, 5-50.	0.2	165