Claude Boucheix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9184847/publications.pdf Version: 2024-02-01

122	9,597	³⁶³⁰³ 51	³⁸³⁹⁵ 95
papers	citations	n-index	g-index
131 all docs	131 docs citations	131 times ranked	8273 citing authors

#	Article	IF	CITATIONS
1	Treatment of Painful Palmoplantar Keratoderma Related to Pachyonychia Congenita Using EGFR Inhibitors. Biomedicines, 2022, 10, 841.	3.2	6
2	Pharmacologic modulation of 5-fluorouracil by folinic acid and pyridoxine for treatment of patients with advanced breast carcinoma. Scientific Reports, 2022, 12, .	3.3	0
3	Pharmacologic modulation of 5-fluorouracil by folinic acid and high-dose pyridoxine for treatment of patients with digestive tract carcinomas. Scientific Reports, 2021, 11, 12668.	3.3	4
4	Use of Epidermal Growth Factor Receptor Inhibitor Erlotinib to Treat Palmoplantar Keratoderma in Patients With Olmsted Syndrome Caused by <i>TRPV3</i> Mutations. JAMA Dermatology, 2020, 156, 191.	4.1	37
5	Optimization of IEDDA bioorthogonal system: Efficient process to improve trans-cyclooctene/tetrazine interaction. European Journal of Medicinal Chemistry, 2020, 203, 112574.	5.5	7
6	Tspan8 Drives Melanoma Dermal Invasion by Promoting ProMMP-9 Activation and Basement Membrane Proteolysis in a Keratinocyte-Dependent Manner. Cancers, 2020, 12, 1297.	3.7	16
7	Rapid Isolation of Rare Isotype-Switched Hybridoma Variants: Application to the Generation of IgG2a and IgG2b MAb to CD63, a Late Endosome and Exosome Marker. Antibodies, 2020, 9, 29.	2.5	6
8	Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth. Cancers, 2020, 12, 795.	3.7	11
9	TspanC8 tetraspanins differentially regulate ADAM10 endocytosis and half-life. Life Science Alliance, 2020, 3, e201900444.	2.8	29
10	The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nature Communications, 2019, 10, 3303.	12.8	52
11	Tspan8 is expressed in breast cancer and regulates Eâ€eadherin/catenin signalling and metastasis accompanied by increased circulating extracellular vesicles. Journal of Pathology, 2019, 248, 421-437.	4.5	29
12	Effects in Cancer Cells of the Recombinant l-Methionine Gamma-Lyase from <i>Brevibacterium aurantiacum.</i> Encapsulation in Human Erythrocytes for Sustained l-Methionine Elimination. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 489-502.	2.5	18
13	Targeting the Tetraspanins with Monoclonal Antibodies in Oncology: Focus on Tspan8/Co-029. Cancers, 2019, 11, 179.	3.7	21
14	Enhancement of 5-Fluorouracil Cytotoxicity by Pyridoxal 5â€2-Phosphate and Folinic Acid in Tandem. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 238-243.	2.5	5
15	RNA sequencing reveals upregulation of a transcriptomic program associated with stemness in metastatic prostate cancer cells selected for taxane resistance. Oncotarget, 2018, 9, 30363-30384.	1.8	19
16	New insights into the tetraspanin Tspan5 using novel monoclonal antibodies. Journal of Biological Chemistry, 2017, 292, 9551-9566.	3.4	26
17	CD9 Regulates Major Histocompatibility Complex Class II Trafficking in Monocyte-Derived Dendritic Cells. Molecular and Cellular Biology, 2017, 37, .	2.3	29
18	Antibody PEGylation in bioorthogonal pretargeting with trans-cyclooctene/tetrazine cycloaddition: in vitro and in vivo evaluation in colorectal cancer models. Scientific Reports, 2017, 7, 14918.	3.3	25

#	Article	IF	CITATIONS
19	Regulation of the trafficking and the function of the metalloprotease ADAM10 by tetraspanins. Biochemical Society Transactions, 2017, 45, 937-944.	3.4	44
20	Tetraspanin 8 (TSPAN 8) as a potential target for radio-immunotherapy of colorectal cancer. Oncotarget, 2017, 8, 22034-22047.	1.8	25
21	Multi-factorial modulation of colorectal carcinoma cells motility - partial coordination by the tetraspanin Co-029/tspan8. Oncotarget, 2017, 8, 27454-27470.	1.8	12
22	TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cellular and Molecular Life Sciences, 2016, 73, 1895-1915.	5.4	105
23	IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process. Oncotarget, 2016, 7, 82511-82527.	1.8	31
24	CD81 Controls Immunity to Listeria Infection through Rac-Dependent Inhibition of Proinflammatory Mediator Release and Activation of Cytotoxic T Cells. Journal of Immunology, 2015, 194, 6090-6101.	0.8	14
25	Tetraspanin CD9 participates in dysmegakaryopoiesis and stromal interactions in primary myelofibrosis. Haematologica, 2015, 100, 757-767.	3.5	9
26	Effect of an anti-human Co-029/tspan8 mouse monoclonal antibody on tumor growth in a nude mouse model. Frontiers in Physiology, 2014, 5, 364.	2.8	37
27	Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development (Cambridge), 2014, 141, 3732-3739.	2.5	66
28	Tetraspanins at a glance. Journal of Cell Science, 2014, 127, 3641-8.	2.0	325
29	The Role of Tetraspanin Complexes in Egg-Sperm Fusion. , 2013, , 203-231.		2
30	Knockout of the tetraspanin <i>Cd9</i> in the TRAMP model of <i>de novo</i> prostate cancer increases spontaneous metastases in an organ-specific manner. International Journal of Cancer, 2013, 133, 1803-1812.	5.1	21
31	Skinâ€draining lymph node priming is sufficient to induce sterile immunity against preâ€erythrocytic malaria. EMBO Molecular Medicine, 2013, 5, 250-263.	6.9	33
32	Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nature Communications, 2013, 4, 1674.	12.8	72
33	TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. Journal of Cell Biology, 2012, 199, 481-496.	5.2	161
34	Targeting tetraspanins in cancer. Expert Opinion on Therapeutic Targets, 2012, 16, 985-997.	3.4	35
35	Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nature Medicine, 2011, 17, 1242-1250.	30.7	204
36	α2β1 integrin controls association of Rac with the membrane and triggers quiescence of endothelial cells. Journal of Cell Science, 2010, 123, 2491-2501.	2.0	29

#	Article	IF	CITATIONS
37	E-Cadherin/p120-Catenin and Tetraspanin Co-029 Cooperate for Cell Motility Control in Human Colon Carcinoma. Cancer Research, 2010, 70, 7674-7683.	0.9	77
38	Tetraspanin CD81 Is Required for <i>Listeria monocytogenes</i> Invasion. Infection and Immunity, 2010, 78, 204-209.	2.2	40
39	A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. Journal of Gastroenterology, 2009, 44, 889-896.	5.1	57
40	Analysis of the Î ³ -secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nature Cell Biology, 2009, 11, 1340-1346.	10.3	121
41	In situ chemical cross-linking on living cells reveals CD9P-1 cis-oligomer at cell surface. Journal of Proteomics, 2009, 73, 93-102.	2.4	15
42	The Ig Domain Protein CD9P-1 Down-regulates CD81 Ability to Support Plasmodium yoelii Infection. Journal of Biological Chemistry, 2009, 284, 31572-31578.	3.4	26
43	Lateral organization of membrane proteins: tetraspanins spin their web. Biochemical Journal, 2009, 420, 133-154.	3.7	369
44	Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis and/or at first relapse: Results from the GET-LALA group. Leukemia Research, 2008, 32, 1741-1750.	0.8	50
45	Genes contributing to prion pathogenesis. Journal of General Virology, 2008, 89, 1777-1788.	2.9	116
46	Tetraspanins Regulate ADAM10-Mediated Cleavage of TNF-α and Epidermal Growth Factor. Journal of Immunology, 2008, 181, 7002-7013.	0.8	132
47	Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. Journal of Cell Biology, 2008, 182, 765-776.	5.2	134
48	Hepatocyte Permissiveness to Plasmodium Infection Is Conveyed by a Short and Structurally Conserved Region of the CD81 Large Extracellular Domain. PLoS Pathogens, 2008, 4, e1000010.	4.7	80
49	The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. Journal of Cellular Biochemistry, 2007, 102, 650-664.	2.6	45
50	Alternative invasion pathways for plasmodium berghei sporozoites. International Journal for Parasitology, 2007, 37, 173-182.	3.1	57
51	CD9 controls the formation of clusters that contain tetraspanins and the integrin $\hat{1}\pm\hat{0}^21$, which are involved in human and mouse gamete fusion. Journal of Cell Science, 2006, 119, 416-424.	2.0	121
52	Dissociation of the complex between CD151 and laminin-binding integrins permits migration of epithelial cells. Experimental Cell Research, 2006, 312, 983-995.	2.6	45
53	The molecular players of sperm–egg fusion in mammals. Seminars in Cell and Developmental Biology, 2006, 17, 254-263.	5.0	142
54	Reduced fertility of female mice lacking CD81. Developmental Biology, 2006, 290, 351-358.	2.0	182

#	Article	IF	CITATIONS
55	Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics, 2006, 6, 1437-1449.	2.2	87
56	Membrane microdomains and proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics, 2006, 6, 6447-6454.	2.2	125
57	Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species. Cellular Microbiology, 2006, 8, 1134-1146.	2.1	94
58	Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites. Journal of Cell Science, 2006, 119, 1992-2002.	2.0	116
59	New Approach for High-Throughput Screening of Drug Activity on Plasmodium Liver Stages. Antimicrobial Agents and Chemotherapy, 2006, 50, 1586-1589.	3.2	40
60	Profiling of the Tetraspanin Web of Human Colon Cancer Cells. Molecular and Cellular Proteomics, 2006, 5, 845-857.	3.8	141
61	The CD9 Tetraspanin Is Not Required for the Development of Peripheral B Cells or for Humoral Immunity. Journal of Immunology, 2005, 175, 2925-2930.	0.8	33
62	Outcome of Treatment in Adults With Acute Lymphoblastic Leukemia: Analysis of the LALA-94 Trial. Journal of Clinical Oncology, 2004, 22, 4075-4086.	1.6	480
63	Tetraspanins connect several types of Ig proteins: IgM is a novel component of the tetraspanin web on B-lymphoid cells. Cancer Immunology, Immunotherapy, 2004, 53, 148-152.	4.2	31
64	Tetraspan and beta-1 integrins expression pattern of the epithelial lung adenocarcinoma cell line A549 and its sensitivity to divalent cations. , 2004, 60B, 31-36.		8
65	A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL). Blood, 2004, 104, 2444-2451.	1.4	76
66	A physical and functional link between cholesterol and tetraspanins. European Journal of Immunology, 2003, 33, 2479-2489.	2.9	202
67	Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nature Medicine, 2003, 9, 93-96.	30.7	327
68	Multiple levels of interactions within the tetraspanin web. Biochemical and Biophysical Research Communications, 2003, 304, 107-112.	2.1	116
69	The Tetraspanin CD81 Regulates the Expression of CD19 During B Cell Development in a Postendoplasmic Reticulum Compartment. Journal of Immunology, 2003, 171, 4062-4072.	0.8	117
70	EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochemical Journal, 2003, 373, 409-421.	3.7	133
71	Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemiaresults of the prospective multicenter LALA-94 trial. Blood, 2002, 100, 2357-2366.	1.4	344
72	FAK-mediated Inhibition of Vascular Smooth Muscle Cell Migration by the Tetraspanin CD9. Thrombosis and Haemostasis, 2002, 87, 1043-1050.	3.4	17

#	Article	IF	CITATIONS
73	Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Letters, 2002, 516, 139-144.	2.8	202
74	The tetraspanin protein, CD9, is expressed by progenitor cells committed to oligodendrogenesis and is linked to β1 integrin, CD81, and Tspan-2. Clia, 2002, 40, 350-359.	4.9	69
75	Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development (Cambridge), 2002, 129, 1995-2002.	2.5	105
76	Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development (Cambridge), 2002, 129, 1995-2002.	2.5	32
77	CD9 and megakaryocyte differentiation. Blood, 2001, 97, 1982-1989.	1.4	61
78	Tetraspanins and malignancy. Expert Reviews in Molecular Medicine, 2001, 3, 1-17.	3.9	110
79	The Major CD9 and CD81 Molecular Partner. Journal of Biological Chemistry, 2001, 276, 14329-14337.	3.4	208
80	CD46 (membrane cofactor protein) associates with multiple β1 integrins and tetraspans. European Journal of Immunology, 2000, 30, 900-907.	2.9	93
81	Sequence and expression of seven new tetraspans. BBA - Proteins and Proteomics, 2000, 1478, 159-163.	2.1	83
82	Severely Reduced Female Fertility in CD9-Deficient Mice. Science, 2000, 287, 319-321.	12.6	610
83	Selective tetraspan–integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disruptir tetraspan interactions. Biochemical Journal, 1999, 340, 103-111.	^{1g} 3.7	200
84	Selective tetraspan‒integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disruptin tetraspan interactions. Biochemical Journal, 1999, 340, 103.	g _{3.7}	177
85	CD19 Is Linked to the Integrin-associated Tetraspans CD9, CD81, and CD82. Journal of Biological Chemistry, 1998, 273, 30537-30543.	3.4	123
86	Functional Analysis of Four Tetraspans, CD9, CD53, CD81, and CD82, Suggests a Common Role in Costimulation, Cell Adhesion, and Migration: Only CD9 Upregulates HB-EGF Activity. Cellular Immunology, 1997, 182, 105-112.	3.0	150
87	CD9, but not other tetraspans, associates with the β1 integrin precursor. European Journal of Immunology, 1997, 27, 1919-1927.	2.9	53
88	CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLAâ€DR and VLA integrins. European Journal of Immunology, 1996, 26, 2657-2665.	2.9	349
89	Anti-Platelet Antibody Interactions with FcÎ ³ Receptor. Seminars in Thrombosis and Hemostasis, 1995, 21, 10-22.	2.7	35
90	Autologous BMT for Post-Remission Therapy in Adult ALL: An Immunological Approach. Leukemia and Lymphoma, 1994, 13, 95-98.	1.3	5

#	Article	IF	CITATIONS
91	CD9 antigen is an accessory subunit of the VLA integrin complexes. European Journal of Immunology, 1994, 24, 3005-3013.	2.9	147
92	Molecular cloning of the mouse equivalent of CD9 antigen. Thrombosis Research, 1993, 71, 377-383.	1.7	30
93	Organization of the Human CD9 Gene. Genomics, 1993, 16, 132-138.	2.9	20
94	Effects of monoclonal antibodies raised against the common acute lymphoblastic leukemia antigen on endopeptidase-24.11 activity. Biochemical Pharmacology, 1992, 43, 809-814.	4.4	5
95	Detection of neutral endopeptidase-24.11/CD10 by flow cytometry and photomicroscopy using a new fluorescent inhibitor. Analytical Biochemistry, 1992, 205, 57-64.	2.4	3
96	Interaction of two GPIIb/IIIa monoclonal antibodies with platelet Fc receptor (FcγRII). British Journal of Haematology, 1991, 78, 80-86.	2.5	39
97	Activation of platelets induced by mAb P256 specific for glycoprotein IIb-IIIa. Possible evidence for a role for IIb-IIIa in membrane signal transduction. FEBS Journal, 1990, 190, 177-183.	0.2	17
98	Platelet activation by CD9 monoclonal antibodies is mediated by the F _{Cγ} II receptor. British Journal of Haematology, 1990, 74, 216-222.	2.5	145
99	Autocrine growth of leukemic cells. Leukemia Research, 1990, 14, 689-693.	0.8	6
100	The role of growth-factor receptors (excluding IL-2 receptors) in the proliferation and differentiation of normal and leukemic hematopoietic cells. Leukemia Research, 1990, 14, 695-698.	0.8	2
101	Manipulation of the immune response by monoclonal antibodies in auto-immune pathology. Current Eye Research, 1990, 9, 201-205.	1.5	1
102	Extensive C1q-complement initiated lysis of human platelets by IgG subclass murine monoclonal antibodies to the CD9 antigen. Thrombosis Research, 1990, 59, 831-839.	1.7	20
103	Diagnostic and prognostic significance of myelomonocytic cell surface antigens in acute myeloid leukaemia. British Journal of Haematology, 1989, 73, 323-330.	2.5	25
104	High frequency of plasminogen activator secretion by malignant human lymphoid cell lines of T-cell type origin. Cancer, 1988, 62, 1952-1957.	4.1	9
105	In vitro depletion of clonogenic cells in adult acute lymphoblastic leukemia with a CD10 (anti-cALLA) monoclonal antibody. European Journal of Cancer & Clinical Oncology, 1987, 23, 1181-1187.	0.7	3
106	A T chronic lymphocytic leukemia with large granular lymphocytes phenotype and functions of leukemic cells under in vitro treatment by differentiation inducers. Cancer, 1987, 59, 1296-1303.	4.1	7
107	Prevention of experimental autoimmune uveoretinitis by active immunization with autoantigen-specific monoclonal antibodies. European Journal of Immunology, 1987, 17, 541-547.	2.9	52
108	Modulation of expression of class II histocompatibility antigens by secretion of a cellular inhibitor in K562 leukemic cells. European Journal of Immunology, 1987, 17, 1021-1025.	2.9	16

#	Article	IF	CITATIONS
109	Non Epidermotropic Cutaneous Lymphoma Ending in Leukemia. Pathology Research and Practice, 1986, 181, 93-98.	2.3	2
110	A latex immunoassay of fibrin/fibrinogen degradation products in plasma using a monoclonal antibody. Thrombosis Research, 1986, 44, 715-728.	1.7	32
111	[55] Method for rapid detection of membrane antigens by immunofluorescence and its application to screening monoclonal antibodies. Methods in Enzymology, 1986, 121, 580-587.	1.0	3
112	Expression of the photoreceptor-specific S-antigen in human retinoblastoma. Cancer, 1986, 57, 1497-1500.	4.1	35
113	Persistence of bone marrow lymphocytosis after induction treatment in common acute lymphoblastic leukemia: Marker analysis and significance. Cancer, 1986, 58, 2018-2022.	4.1	15
114	Conformational change in fibrinogen induced by adsorption to a surface. Journal of Colloid and Interface Science, 1985, 107, 204-208.	9.4	40
115	A new set of monoclonal antibodies against acute lymphoblastic leukemia. Leukemia Research, 1985, 9, 597-604.	0.8	51
116	Modulation of fibroblast-induced clot retraction by calcium channel blocking drugs and the monoclonal antibody ALB6. Journal of Cellular Physiology, 1985, 125, 420-426.	4.1	20
117	Inhibition of experimental autoimmune uveoretinitis in rats by S-antigen-specific monoclonal antibodies. European Journal of Immunology, 1985, 15, 1107-1111.	2.9	33
118	Production and specificity of monoclonal antibodies to retinal S antigen. Current Eye Research, 1984, 3, 867-872.	1.5	52
119	A rapid method for detection of membrane antigens by immunofluorescence and its application to screening hybridoma antibodies. Journal of Immunological Methods, 1983, 57, 145-150.	1.4	24

121	Lymphoblastic lymphoma/leukemia with convoluted nuclei. The question of its relation to the t-cell lineage studied in 13 patients. Cancer, 1980, 45, 1569-1577.	4.1	23
122	Atypical T-cell leukemia terminating Hodgkin's disease. Cancer, 1979, 44, 1403-1407.	4.1	17