## Yikun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/918446/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF                | CITATIONS    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 1  | Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho, or) Tj ETQq1 1                                                                              | 0,784314          | rggT /Overlo |
| 2  | Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy. Journal of Materials Science and Technology, 2022, 102, 66-71.               | 10.7              | 95           |
| 3  | Glass forming ability, magnetic properties and cryogenic magnetocaloric effects in RE60Co20Al20<br>(REÂ=ÂHo, Er, Tm) amorphous ribbons. Journal of Alloys and Compounds, 2022, 895, 162633. | 5.5               | 5            |
| 4  | Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic<br>Gd2MgTiO6 double perovskite oxide. Acta Materialia, 2022, 226, 117669.                 | 7.9               | 131          |
| 5  | Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Science China Materials, 2022, 65, 1345-1352.                                     | 6.3               | 116          |
| 6  | Excellent magnetocaloric performance in the carbide compounds RE2Cr2C3 (RE = Er, Ho, and Dy) and their composites. Materials Today Physics, 2022, 27, 100786.                               | 6.0               | 35           |
| 7  | Structural, magnetic and magnetocaloric properties of the rare earth (RE) molybdate RE2MoO6 (RE =) Tj ETQq1 1                                                                               | 0.784314<br>4.8   | rgBT /Overl  |
| 8  | Structure, magnetic properties and cryogenic magneto-caloric effect (MCE) in RE2FeAlO6 (RE = Gd, Dy,) Tj ETQq0                                                                              | 0 0 rgBT /<br>4.8 | Overlock 10  |
| 9  | Cryogenic magnetic properties and magnetocaloric effects (MCE) in B-site disordered RE2CuMnO6 (RE) Tj ETQq1                                                                                 | 1,0,78431<br>4.8  | .4rgBT /Ov€  |
| 10 | First- and second-order phase transitions in RE6Co2Ga (RE = Ho, Dy or Gd) cryogenic magnetocaloric materials. Science China Materials, 2021, 64, 2846-2857.                                 | 6.3               | 62           |
| 11 | Structural and magnetocaloric properties in the aeschynite type GdCrWO6 and ErCrWO6 oxides.<br>Ceramics International, 2021, 47, 29197-29204.                                               | 4.8               | 13           |
| 12 | Magnetic properties, martensitic transformations and magnetocaloric performances in Ni44Mn45-xFexSn11 (x = 0–3) Heusler alloys. Materials Chemistry and Physics, 2021, 273, 125150.         | 4.0               | 7            |

|    | NI44MII43-XFeX5IIII (X = $04 \in 5$ ) Heusier alloys. Materials Chemistry and Physics, 2021, 275, 125150.                                                                                                                       |     |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 13 | Magnetic properties and promising cryogenic magneto-caloric performances of<br>Gd <sub>20</sub> Ho <sub>20</sub> Tm <sub>20</sub> Cu <sub>20</sub> Ni <sub>20</sub> amorphous<br>ribbons*. Chinese Physics B, 2021, 30, 017501. | 1.4 | 40 |
| 14 | Magnetic properties and magneto-caloric performances in RECo2B2C (REÂ= Gd, Tb and Dy) compounds.<br>Journal of Alloys and Compounds, 2020, 817, 152780.                                                                         | 5.5 | 50 |
| 15 | Magnetocaloric effect and refrigeration performance in RE60Co20Ni20 (REÂ=ÂHo and Er) amorphous<br>ribbons. Journal of Magnetism and Magnetic Materials, 2020, 498, 166179.                                                      | 2.3 | 72 |
| 16 | Structural, magnetic and magnetocaloric properties in RE2Ni1.5Ga2.5 (REÂ= Dy, Ho, Er and Tm) compounds. Journal of Alloys and Compounds, 2020, 830, 154666.                                                                     | 5.5 | 16 |
| 17 | Structural, magnetic properties and magneto-caloric performances in the antiferromagnetic RECoSi2<br>(REÂ= Er and Tm) compounds. Journal of Alloys and Compounds, 2020, 843, 156016.                                            | 5.5 | 4  |
| 18 | Magnetic properties, magnetocaloric effect and refrigeration performance in <i>RE</i> 60Al20Ni20<br>( <i>RE</i> = Tm, Er and Ho) amorphous ribbons. Journal of Applied Physics, 2020, 127, .                                    | 2.5 | 12 |

2

YIKUN ZHANG

| #  | Article                                                                                                                                                                                         | IF                | CITATIONS                |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|
| 19 | Crystal structure, magnetic properties, and magnetocaloric effect in B-site disordered RE2CrMnO6 (RE) Tj ETQq1                                                                                  | 10,7843<br>4.8    | 14 <sub>3</sub> rgBT /Ov |
| 20 | Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase<br>HoNi/HoNi <sub>2</sub> composite*. Chinese Physics B, 2020, 29, 107502.                                  | 1.4               | 7                        |
| 21 | Microstructure and cryogenic magnetic properties in amorphousized RE57Cu25Al18 (REÂ= Ho and Tm)<br>ribbons. Journal of Alloys and Compounds, 2019, 770, 849-853.                                | 5.5               | 38                       |
| 22 | Observation of large magnetocaloric effect in ternary Er-based Er4CoCd compound. Journal of<br>Magnetism and Magnetic Materials, 2019, 489, 165462.                                             | 2.3               | 13                       |
| 23 | Giant refrigerant capacity in equi-atomic HoErGdCuNi amorphous ribbons. Journal of Alloys and Compounds, 2019, 792, 180-184.                                                                    | 5.5               | 8                        |
| 24 | Review of the structural, magnetic and magnetocaloric properties in ternary rare earth RE2T2X type intermetallic compounds. Journal of Alloys and Compounds, 2019, 787, 1173-1186.              | 5.5               | 222                      |
| 25 | Magnetic Phase Transition and Magnetocaloric Effect in Ternary Er <sub>2</sub> Ni <sub>2</sub> Ga<br>Compound. IEEE Transactions on Magnetics, 2019, 55, 1-4.                                   | 2.1               | 19                       |
| 26 | Metamagnetic transition and magnetocaloric properties in antiferromagnetic Ho 2 Ni 2 Ga and Tm 2 Ni<br>2 Ga compounds. Intermetallics, 2018, 94, 17-21.                                         | 3.9               | 46                       |
| 27 | Structure and cryogenic magnetic properties in Ho2BaCuO5 cuprate. Ceramics International, 2018, 44, 1991-1994.                                                                                  | 4.8               | 58                       |
| 28 | Cryogenic magnetic properties of Er60Ni30Co10 amorphous ribbon. Journal of Non-Crystalline Solids, 2018, 484, 36-39.                                                                            | 3.1               | 7                        |
| 29 | Continuous Transformations of the Nucleation Mechanism in the Undercooled State. Crystal Growth and Design, 2018, 18, 2905-2911.                                                                | 3.0               | 1                        |
| 30 | Structure, glass-forming ability, magnetic and cryogenic magneto-caloric properties in the<br>amorphous Ni30Co10RE60 (RE = Ho and Tm) ribbons. Journal of Materials Science, 2018, 53, 9816-982 | 2. <sup>3.7</sup> | 27                       |
| 31 | Magnetic properties and magnetic entropy change in rare earth-rich aluminium compounds of RE 2<br>CuAl 3 ( RE = Dy and Tm). Intermetallics, 2018, 97, 8-11.                                     | 3.9               | 0                        |
| 32 | Low field induced large magnetic entropy change in the amorphousized Tm60Co20Ni20 ribbon. Journal of Alloys and Compounds, 2018, 733, 40-44.                                                    | 5.5               | 57                       |
| 33 | Cryogenic magnetic properties in the pyrochlore RE2TiMnO7 (RE = Dy and Ho) compounds. Ceramics<br>International, 2018, 44, 15681-15685.                                                         | 4.8               | 10                       |
| 34 | Structure, magnetic and cryogenic magneto-caloric properties in intermetallic gallium compounds<br>RE2Co2Ca (RE = Dy, Ho, Er, and Tm). Journal of Applied Physics, 2018, 124, 043903.           | 2.5               | 14                       |
| 35 | Cryogenic magnetic properties and magnetocaloric performance in double perovskite Pr2NiMnO6 and Pr2CoMnO6 compounds. Ceramics International, 2018, 44, 20762-20767.                             | 4.8               | 21                       |
| 36 | Magnetism and magnetocaloric effect in the RE2CuSi3 (REÂ= Dy andÂHo) compounds. Journal of Alloys and Compounds, 2017, 702, 546-550.                                                            | 5.5               | 24                       |

YIKUN ZHANG

| #  | Article                                                                                                                                                                                                              | IF           | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 37 | Magnetic properties and magnetocaloric effect in the aluminide RE NiAl 2 ( RE Â=ÂHo and Er) compounds.<br>Intermetallics, 2017, 88, 61-64.                                                                           | 3.9          | 21        |
| 38 | Magnetic and magnetocaloric properties of the ternary cadmium based intermetallic compounds of Gd2Cu2Cd and Er2Cu2Cd. Journal of Alloys and Compounds, 2017, 692, 665-669.                                           | 5.5          | 63        |
| 39 | Excellent magnetocaloric properties in RE2Cu2Cd (RE = Dy and Tm) compounds and its composite<br>materials. Scientific Reports, 2016, 6, 34192.                                                                       | 3.3          | 65        |
| 40 | Reversible Table-Like Magnetocaloric Effect in EuAuGe Compound. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2159-2163.                                                                               | 1.8          | 18        |
| 41 | Magnetocaloric Properties in TbNi2 B 2C Compound. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2681-2684.                                                                                             | 1.8          | 4         |
| 42 | Large reversible magnetocaloric effect in RE <sub>2</sub> Cu <sub>2</sub> In (RE  =  Er and Tm<br>enhanced refrigerant capacity in its composite materials. Journal Physics D: Applied Physics, 2016, 49,<br>145002. | ) and<br>2.8 | 48        |
| 43 | Study of the magnetic phase transitions and magnetocaloric effect in Dy2Cu2In compound. Journal of Alloys and Compounds, 2016, 667, 130-133.                                                                         | 5.5          | 46        |
| 44 | Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. Journal of Alloys and Compounds, 2016, 656, 635-639.                                                                                   | 5.5          | 80        |
| 45 | Giant low field magnetocaloric effect and field-induced metamagnetic transition in TmZn. Applied Physics Letters, 2015, 107, .                                                                                       | 3.3          | 76        |
| 46 | Magnetic phase transitions and large magnetic entropy change with a wide temperature span in HoZn.<br>Journal of Alloys and Compounds, 2015, 643, 147-151.                                                           | 5.5          | 30        |
| 47 | Magnetic properties and magnetocaloric effect in ternary REAgAl (RE= Er and Ho) intermetallic compounds. Journal of Alloys and Compounds, 2015, 619, 12-15.                                                          | 5.5          | 61        |
| 48 | Effect of Fe substitution on magnetocaloric effect in metamagnetic boron-carbide ErNi2â^'xFexB2C compounds. Journal of Alloys and Compounds, 2014, 610, 540-543.                                                     | 5.5          | 22        |