Chudi O Ndubaku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9184031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnitude of Therapeutic STING Activation Determines CD8+ T Cell-Mediated Anti-tumor Immunity. Cell Reports, 2018, 25, 3074-3085.e5.	6.4	266
2	USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature, 2017, 550, 534-538.	27.8	258
3	Discovery of a Potent and Selective BCL-X _L Inhibitor with <i>in Vivo</i> Activity. ACS Medicinal Chemistry Letters, 2014, 5, 1088-1093.	2.8	242
4	Discovery of 2-{3-[2-(1-Isopropyl-3-methyl-1 <i>H</i> -1,2–4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2- <i>d</i>][1,4]oxa (GDC-0032): A β-Sparing Phosphoinositide 3-Kinase Inhibitor with High Unbound Exposure and Robust in Vivo Antitumor Activity. Journal of Medicinal Chemistry, 2013, 56, 4597-4610.	zepin-9-yl] 6.4	-1 <i>H</i> -pyr 161
5	NK cells mediate clearance of CD8 ⁺ T cell–resistant tumors in response to STING agonists. Science Immunology, 2020, 5, .	11.9	128
6	MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature, 2015, 519, 425-430.	27.8	112
7	Antagonism of c-IAP and XIAP Proteins Is Required for Efficient Induction of Cell Death by Small-Molecule IAP Antagonists. ACS Chemical Biology, 2009, 4, 557-566.	3.4	91
8	The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (<i>S</i>)-2-((2-(1-Isopropyl-1 <i>H</i> -1,2,4-triazol-5-yl)-5,6-dihydrobenzo[<i>f</i>]imidazo[1,2- <i>d</i>][1,4] (GDC-0326). Journal of Medicinal Chemistry, 2016, 59, 985-1002.	oxazepin-9	-yl)87 yl)0xy)propar
9	Discovery of Clinical Development Candidate GDC-0084, a Brain Penetrant Inhibitor of PI3K and mTOR. ACS Medicinal Chemistry Letters, 2016, 7, 351-356.	2.8	78
10	Inhibiting the Deubiquitinating Enzymes (DUBs). Journal of Medicinal Chemistry, 2015, 58, 1581-1595.	6.4	76
11	Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-p <i>K</i> _a Polar Moiety. ACS Medicinal Chemistry Letters, 2015, 6, 1241-1246.	2.8	68
12	anti-1,2-Diols via Ni-Catalyzed Reductive Coupling of Alkynes and α-Oxyaldehydes. Organic Letters, 2005, 7, 2937-2940.	4.6	67
13	Discovery of Small-Molecule Inhibitors of Ubiquitin Specific Protease 7 (USP7) Using Integrated NMR and in Silico Techniques. Journal of Medicinal Chemistry, 2017, 60, 10056-10070.	6.4	58
14	Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window. Journal of Medicinal Chemistry, 2016, 59, 5520-5541.	6.4	57
15	The Design and Identification of Brain Penetrant Inhibitors of Phosphoinositide 3-Kinase α. Journal of Medicinal Chemistry, 2012, 55, 8007-8020.	6.4	47
16	Discovery of Selective 4-Amino-pyridopyrimidine Inhibitors of MAP4K4 Using Fragment-Based Lead Identification and Optimization. Journal of Medicinal Chemistry, 2014, 57, 3484-3493.	6.4	46
17	Amino Acid Derived Heterocycles:Â Lewis Acid Catalyzed and Radical Cyclizations from Peptide Acetals. Journal of Organic Chemistry, 2002, 67, 3985-3988.	3.2	39
18	Structure-Guided Rescaffolding of Selective Antagonists of BCL-X _L . ACS Medicinal Chemistry Letters, 2014, 5, 662-667.	2.8	37

Chudi O Ndubaku

#	Article	IF	CITATIONS
19	Structure-Based Design of GNE-495, a Potent and Selective MAP4K4 Inhibitor with Efficacy in Retinal Angiogenesis. ACS Medicinal Chemistry Letters, 2015, 6, 913-918.	2.8	35
20	Targeting inhibitor of apoptosis proteins for therapeutic intervention. Future Medicinal Chemistry, 2009, 1, 1509-1525.	2.3	33
21	Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase β isoform. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2606-2613.	2.2	21
22	Fragment-based identification and optimization of a class of potent pyrrolo[2,1-f][1,2,4]triazine MAP4K4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4546-4552.	2.2	21
23	Development of Potent and Selective Pyrazolopyrimidine IRAK4 Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 6223-6240.	6.4	21
24	Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC l–deficient and MHC I ⁺ tumors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200568119.	7.1	20
25	Abstract DDT02-01: Discovery of GDC-0032: A beta-sparing PI3K inhibitor active against PIK3CA mutant tumors Cancer Research, 2013, 73, DDT02-01-DDT02-01.	0.9	9
26	Abstract 1445: STING activation in the tumor microenvironment with a synthetic human STING-activating cyclic dinucleotide leads to potent anti-tumor immunity. Cancer Research, 2016, 76, 1445-1445.	0.9	7
27	Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol. Chemical Science, 2019, 10, 7788-7791.	7.4	6
28	Abstract SY39-02: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cancer Research, 2016, 76, SY39-02-SY39-02.	0.9	5
29	A Versatile Annulation Route to Primary-Amino-Substituted Naphthyridine Esters. Synlett, 2013, 25, 89-92.	1.8	3
30	anti-1,2-Diols via Ni-Catalyzed Reductive Coupling of Alkynes and α-Oxyaldehydes ChemInform, 2005, 36, no.	0.0	0
31	Abstract B28: Selective antagonism of IAP proteins for regulating apoptosis and TNF pathways. , 2009, ,		0
32	Abstract B020: STING activation in the tumor microenvironment using a synthetic human STING-activating cyclic dinucleotide induces potent antitumor immunity. , 2016, , .		0