Thomas Tregenza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9183634/publications.pdf

Version: 2024-02-01

169 papers 11,337 citations

³⁸⁷⁴² 50 h-index

100 g-index

174 all docs

174 docs citations

times ranked

174

9468 citing authors

#	Article	IF	CITATIONS
1	Genetic compatibility, mate choice and patterns of parentage: Invited Review. Molecular Ecology, 2000, 9, 1013-1027.	3.9	810
2	Sexual selection and speciation. Trends in Ecology and Evolution, 2001, 16, 364-371.	8.7	793
3	Limits to the Adaptive Potential of Small Populations. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 433-458.	8.3	705
4	Genic capture and resolving the lek paradox. Trends in Ecology and Evolution, 2004, 19, 323-328.	8.7	527
5	Polyandrous females avoid costs of inbreeding. Nature, 2002, 415, 71-73.	27.8	456
6	Sexual selection and animal personality. Biological Reviews, 2010, 85, 217-246.	10.4	440
7	Double-blind review favours increased representation of female authors. Trends in Ecology and Evolution, 2008, 23, 4-6.	8.7	401
8	Building on the Ideal Free Distribution. Advances in Ecological Research, 1995, 26, 253-307.	2.7	272
9	A Comparative Test of the Adaptive Plasticity Hypothesis: Relationships between Habitat and Phenotype in Anuran Larvae. American Naturalist, 2002, 160, 87-102.	2.1	211
10	Natural and Sexual Selection in a Wild Insect Population. Science, 2010, 328, 1269-1272.	12.6	188
11	Definitive evidence for cuticular pheromones in a cricket. Animal Behaviour, 1997, 54, 979-984.	1.9	186
12	Defensive tool use in a coconut-carrying octopus. Current Biology, 2009, 19, R1069-R1070.	3.9	183
13	BENEFITS OF MULTIPLE MATES IN THE CRICKET <i>GRYLLUS BIMACULATUS</i> . Evolution; International Journal of Organic Evolution, 1998, 52, 1726-1730.	2.3	171
14	Why do male Callosobruchus maculatus harm their mates?. Behavioral Ecology, 2005, 16, 788-793.	2.2	160
15	DOSAGE RESPONSE OF AN INDUCED DEFENSE: HOW SENSITIVE ARE TADPOLES TO PREDATION RISK?. Ecology, 2002, 83, 1580-1585.	3.2	147
16	GENETIC ARCHITECTURE OF METABOLIC RATE: ENVIRONMENT SPECIFIC EPISTASIS BETWEEN MITOCHONDRIAL AND NUCLEAR GENES IN AN INSECT. Evolution; International Journal of Organic Evolution, 2010, 64, 3354-3363.	2.3	146
17	Benefits of Multiple Mates in the Cricket Gryllus bimaculatus. Evolution; International Journal of Organic Evolution, 1998, 52, 1726.	2.3	134
18	The evolution of body size under environmental gradients in ectotherms: why should Bergmann's rule apply to lizards?. BMC Evolutionary Biology, 2008, 8, 68.	3.2	134

#	Article	IF	CITATIONS
19	Dynamic mimicry in an Indo–Malayan octopus. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1755-1758.	2.6	133
20	Gender bias in the refereeing process?. Trends in Ecology and Evolution, 2002, 17, 349-350.	8.7	131
21	Molecular evidence of post–copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 159-164.	2.6	130
22	Inbreeding, inbreeding depression and extinction. Conservation Genetics, 2008, 9, 833-843.	1.5	128
23	Measuring polyandry in wild populations: a case study using promiscuous crickets. Molecular Ecology, 2005, 14, 2169-2179.	3.9	123
24	Promiscuous females avoid inbreeding by controlling sperm storage. Molecular Ecology, 2009, 18, 3340-3345.	3.9	118
25	Superior sperm competitors sire higher–quality young. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1933-1938.	2.6	117
26	Monogamy and the Battle of the Sexes. Annual Review of Entomology, 2009, 54, 361-378.	11.8	117
27	Sexual conflict and life histories. Animal Behaviour, 2006, 71, 999-1011.	1.9	112
28	The importance of fission–fusion social group dynamics in birds. Ibis, 2014, 156, 701-715.	1.9	101
29	Female impersonation as an alternative reproductive strategy in giant cuttlefish. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1347-1349.	2.6	98
30	Speciation without isolation. Nature, 1999, 400, 311-312.	27.8	97
31	Introduction. Sexual conflict: a new paradigm?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 229-234.	4.0	94
32	Natural variation in morphology of larval amphibians: Phenotypic plasticity in nature?. Ecological Monographs, 2009, 79, 681-705.	5.4	93
33	Publication bias and merit in ecology. Oikos, 2007, 116, 1247-1253.	2.7	85
34	PHENOTYPIC LABILITY AND THE EVOLUTION OF PREDATOR-INDUCED PLASTICITY IN TADPOLES. Evolution; International Journal of Organic Evolution, 2002, 56, 361-370.	2.3	83
35	The evolution of viviparity opens opportunities for lizard radiation but drives it into a climatic culâ€deâ€sac. Global Ecology and Biogeography, 2013, 22, 857-867.	5.8	82
36	Postcopulatory inbreeding avoidance by female crickets only revealed by molecular markers. Molecular Ecology, 2006, 15, 3817-3824.	3.9	80

#	Article	IF	CITATIONS
37	Female preference for male courtship song and its role as a signal of immune function and condition. Animal Behaviour, 2006, 72, 809-818.	1.9	80
38	The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia, 2015, 179, 699-710.	2.0	74
39	A new theory for the evolution of polyandry as a means of inbreeding avoidance. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2873-2879.	2.6	71
40	Turtle mating patterns buffer against disruptive effects of climate change. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2122-2127.	2.6	70
41	Guarding Males Protect Females from Predation in a Wild Insect. Current Biology, 2011, 21, 1716-1719.	3.9	69
42	Costly sexual harassment in a beetle. Physiological Entomology, 2009, 34, 86-92.	1.5	68
43	Fecundity Selection and the Evolution of Reproductive Output and Sex-Specific Body Size in the Liolaemus Lizard Adaptive Radiation. Evolutionary Biology, 2011, 38, 197-207.	1.1	68
44	To Name or Not to Name: The Effect of Changing Author Gender on Peer Review. BioScience, 2009, 59, 985-989.	4.9	62
45	Competition, Cannibalism, and Size Class Dominance in a Dragonfly. Oikos, 1992, 65, 455.	2.7	61
46	THE ORIGINS OF PREMATING REPRODUCTIVE ISOLATION: TESTING HYPOTHESES IN THE GRASSHOPPER CHORTHIPPUS PARALLELUS. Evolution; International Journal of Organic Evolution, 2000, 54, 1687-1698.	2.3	61
47	Sperm competition and maternal effects differentially influence testis and sperm size in <i>Callosobruchus maculatus </i>). Journal of Evolutionary Biology, 2009, 22, 1143-1150.	1.7	57
48	Genital shape correlates with sperm transfer success in the praying mantis Ciulfina klassi (Insecta:) Tj ETQq0 0 0 r	gBT ₄ /Over	lock 10 Tf 50
49	Background matching and disruptive coloration as habitat-specific strategies for camouflage. Scientific Reports, 2019, 9, 7840.	3.3	57
50	The Rate of Degradation of Chemical Cues Indicating Predation Risk: An Experiment and Review. Ethology, 2014, 120, 942-949.	1.1	56
51	Genetic differentiation of an endangered capercaillie (Tetrao urogallus) population at the Southern edge of the species range. Conservation Genetics, 2007, 8, 659-670.	1.5	53
52	MATERNAL EFFECTS ON OFFSPRING DEPEND ON FEMALE MATING PATTERN AND OFFSPRING ENVIRONMENT IN YELLOW DUNG FLIES. Evolution; International Journal of Organic Evolution, 2003, 57, 297-304.	2.3	51
53	Behaviour in captivity predicts some aspects of natural behaviour, but not others, in a wild cricket population. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150708.	2.6	51
54	Cultural inheritance drives site fidelity and migratory connectivity in a long-distance migrant. Molecular Ecology, 2010, 19, 5484-5496.	3.9	50

#	Article	IF	CITATIONS
55	Divergence and Reproductive Isolation in the Early Stages of Speciation. Genetica, 2002, 116, 291-300.	1.1	48
56	THE EVOLUTION OF HARM-EFFECT OF SEXUAL CONFLICTS AND POPULATION SIZE. Evolution; International Journal of Organic Evolution, 2011, 65, 725-737.	2.3	48
57	Dynamics of among-individual behavioral variation over adult lifespan in a wild insect. Behavioral Ecology, 2015, 26, 975-985.	2.2	47
58	Multiple postâ€mating barriers to hybridization in field crickets. Molecular Ecology, 2013, 22, 1640-1649.	3.9	45
59	Metabolic rate does not decrease with starvation in <i>Gryllus bimaculatus</i> when changing fuel use is taken into account. Physiological Entomology, 2011, 36, 84-89.	1.5	44
60	Common misconceptions in applying the ideal free distribution. Animal Behaviour, 1994, 47, 485-487.	1.9	43
61	Reconstruction of paternal genotypes over multiple breeding seasons reveals male green turtles do not breed annually. Molecular Ecology, 2012, 21, 3625-3635.	3.9	43
62	Prey risk assessment depends on conspecific density. Oikos, 2011, 120, 1235-1239.	2.7	42
63	Interference and the ideal free distribution: models and tests. Behavioral Ecology, 1996, 7, 379-386.	2.2	40
64	Male dominance determines female egg laying rate in crickets. Biology Letters, 2006, 2, 409-411.	2.3	40
65	Gene Flow Limits Adaptation along Steep Environmental Gradients. American Naturalist, 2020, 195, E67-E86.	2.1	40
66	Evolutionary rates for multivariate traits: the role of selection and genetic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130252.	4.0	39
67	A socioâ€economic perspective on gearâ€based management in an artisanal fishery in southâ€west Madagascar. Fisheries Management and Ecology, 2009, 16, 279-289.	2.0	38
68	Heterozygosity-fitness correlations in a migratory bird: an analysis of inbreeding and single-locus effects. Molecular Ecology, 2011, 20, 4786-4795.	3.9	38
69	Analysing animal social network dynamics: the potential of stochastic actorâ€oriented models. Journal of Animal Ecology, 2017, 86, 202-212.	2.8	38
70	Fineâ€scale population structure, inbreeding risk and avoidance in a wild insect population. Molecular Ecology, 2011, 20, 3045-3055.	3.9	37
71	Testing the effect of earlyâ€ife reproductive effort on ageâ€related decline in a wild insect. Evolution; International Journal of Organic Evolution, 2019, 73, 317-328.	2.3	37
72	Is speciation no accident?. Nature, 1997, 387, 551-552.	27.8	36

#	Article	IF	CITATIONS
73	Title is missing!. Journal of Chemical Ecology, 2000, 26, 257-278.	1.8	36
74	Environmental Conditions during Breeding Modify the Strength of Mass-Dependent Carry-Over Effects in a Migratory Bird. PLoS ONE, 2013, 8, e77783.	2.5	36
75	Comparing pre- and post-copulatory mate competition using social network analysis in wild crickets. Behavioral Ecology, 2016, 27, 912-919.	2.2	36
76	Body size evolution in South American <i>Liolaemus</i> lizards of the <i>boulengeri</i> clade: a contrasting reassessment. Journal of Evolutionary Biology, 2007, 20, 2067-2071.	1.7	35
77	A phylogenetic analysis of sexâ€specific evolution of ecological morphology in <i>Liolaemus</i> lizards. Ecological Research, 2009, 24, 1223-1231.	1.5	35
78	Genomic compatibility occurs over a wide range of parental genetic similarity in an outcrossing plant. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1333-1338.	2.6	34
79	Male burying beetles extend, not reduce, parental care duration when reproductive competition is high. Journal of Evolutionary Biology, 2015, 28, 1394-1402.	1.7	33
80	Female mate preferences in <i>Drosophila simulans </i> : evolution and costs. Journal of Evolutionary Biology, 2010, 23, 1672-1679.	1.7	31
81	Evolutionarily stable foraging speeds in feeding scrambles: a model and an experimental test. Proceedings of the Royal Society B: Biological Sciences, 1995, 260, 273-277.	2.6	30
82	Does reproductive isolation evolve faster in larger populations via sexually antagonistic coevolution?. Biology Letters, 2009, 5, 693-696.	2.3	30
83	<i>Wolbachia</i> infection lowers fertile sperm transfer in a moth. Biology Letters, 2011, 7, 187-189.	2.3	30
84	Darwin a better name than Wallace?. Nature, 1997, 385, 480-480.	27.8	29
85	Unequal competitor ideal free distribution in fish?. Evolutionary Ecology, 1998, 12, 655-666.	1.2	28
86	Wild cricket social networks show stability across generations. BMC Evolutionary Biology, 2016, 16, 151.	3.2	28
87	Oviposition tests of ant preference in a myrmecophilous butterfly. Journal of Evolutionary Biology, 2002, 15, 861-870.	1.7	26
88	The genetic architecture of sexual conflict: male harm and female resistance in <i>Callosobruchus maculatus </i> . Journal of Evolutionary Biology, 2011, 24, 449-456.	1.7	26
89	Spatially heterogeneous selection in nature favors phenotypic plasticity in anuran larvae. Evolution; International Journal of Organic Evolution, 2017, 71, 1670-1685.	2.3	26
90	Genetic compatibility and hatching success in the sea lamprey (<i>Petromyzon marinus</i>). Biology Letters, 2009, 5, 286-288.	2.3	25

#	Article	IF	Citations
91	Comparing individual and population measures of senescence across 10 years in a wild insect population. Evolution; International Journal of Organic Evolution, 2019, 73, 293-302.	2.3	25
92	The influence of male ejaculates on female mate search behaviour, oviposition and longevity in crickets. Animal Behaviour, 2009, 77, 887-892.	1.9	24
93	The Genetics of Cuticular Hydrocarbon Profiles in the Fruit Fly Drosophila simulans. Journal of Heredity, 2012, 103, 230-239.	2.4	24
94	Oosorption and migratory strategy of the milkweed bug, Oncopeltus fasciatus. Animal Behaviour, 2013, 86, 651-657.	1.9	24
95	Limited plasticity in the phenotypic varianceâ€covariance matrix for male advertisement calls in the black field cricket, <i>Teleogryllus commodus</i>). Journal of Evolutionary Biology, 2013, 26, 1060-1078.	1.7	24
96	No evidence that female bruchid beetles, Callosobruchus maculatus, use remating to reduce costs of inbreeding. Animal Behaviour, 2008, 75, 1519-1524.	1.9	23
97	No benefits of polyandry to female green turtles. Behavioral Ecology, 2013, 24, 1022-1029.	2.2	23
98	The multiple origins of sexual size dimorphism in global amphibians. Global Ecology and Biogeography, 2021, 30, 443-458.	5.8	23
99	Courtship signals and mate choice of the flies of inbred Drosophila montana strains. Journal of Evolutionary Biology, 2000, 13, 583-592.	1.7	22
100	Interference and the ideal free distribution: oviposition in a parasitoid wasp. Behavioral Ecology, 1996, 7, 387-394.	2.2	21
101	Natural selection bias?. Nature, 1997, 386, 234-234.	27.8	20
102	Repeatability and heritability of sperm competition outcomes in males and females of Tribolium castaneum. Behavioral Ecology and Sociobiology, 2009, 63, 817-823.	1.4	20
103	Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles. Heredity, 2009, 103, 340-345.	2.6	20
104	Why do so many flour beetle copulations fail?. Entomologia Experimentalis Et Applicata, 2013, 146, 199-206.	1.4	20
105	Niche variation and the maintenance of variation in body size in a burying beetle. Ecological Entomology, 2016, 41, 96-104.	2.2	20
106	Sexual Selection on male cuticular hydrocarbons via male–male competition and female choice. Journal of Evolutionary Biology, 2016, 29, 1346-1355.	1.7	20
107	Sexes and species as rival units of niche saturation during community assembly. Global Ecology and Biogeography, 2018, 27, 593-603.	5.8	20
108	Sexual conflict and speciation. Nature, 2000, 407, 149-150.	27.8	19

#	Article	IF	Citations
109	Nuptial gifts fail to resolve a sexual conflict in an insect. BMC Evolutionary Biology, 2008, 8, 204.	3.2	19
110	Same-sex sexual behaviour as a dominance display. Animal Behaviour, 2016, 114, 113-118.	1.9	19
111	Relative Competitive Success of Unequal Competitors Changes with Overall Density. Oikos, 1996, 77, 158.	2.7	18
112	Preparing the Perfect Cuttlefish Meal: Complex Prey Handling by Dolphins. PLoS ONE, 2009, 4, e4217.	2.5	18
113	Diverse reproductive barriers in hybridising crickets suggests extensive variation in the evolution and maintenance of isolation. Evolutionary Ecology, 2013, 27, 993-1015.	1.2	18
114	Speciation and signal trait genetics. Trends in Ecology and Evolution, 1997, 12, 299-301.	8.7	17
115	Microsatellite loci for the field cricket, Gryllus bimaculatus and their cross-utility in other species of Orthoptera. Molecular Ecology Notes, 2003, 3, 191-195.	1.7	17
116	Reproductive isolation in the acoustically divergent groups of tettigoniid, Mecopoda elongata. PLoS ONE, 2017, 12, e0188843.	2.5	17
117	Transitions in cuticular composition across a hybrid zone: historical accident or environmental adaptation?. Biological Journal of the Linnean Society, 2003, 78, 193-201.	1.6	16
118	Does it pay to have a "bigwig―as a co-author?. Frontiers in Ecology and the Environment, 2008, 6, 410-411.	4.0	16
119	Ship noise inhibits colour change, camouflage, and anti-predator behaviour in shore crabs. Current Biology, 2020, 30, R211-R212.	3.9	16
120	Systematic Variation in Reviewer Practice According to Country and Gender in the Field of Ecology and Evolution. PLoS ONE, 2008, 3, e3202.	2.5	16
121	Evolution: Do Bad Husbands Make Good Fathers?. Current Biology, 2005, 15, R836-R838.	3.9	15
122	Response to Webb et al.: Double-blind review: accept with minor revisions. Trends in Ecology and Evolution, 2008, 23, 353-354.	8.7	15
123	Premating Reproductive Barriers between Hybridising Cricket Species Differing in Their Degree of Polyandry. PLoS ONE, 2011, 6, e19531.	2.5	15
124	The origins of postmating reproductive isolation: testing hypotheses in the grasshopper Chorthippus parallelus. Population Ecology, 2002, 44, 137-144.	1.2	14
125	Chemical cues mediate species recognition in field crickets. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	14
126	Older males attract more females but get fewer matings in a wild field cricket. Animal Behaviour, 2019, 153, 1-14.	1.9	13

#	Article	IF	Citations
127	The battle between the sexes. Nature, 2003, 423, 929-930.	27.8	12
128	Local Competition Between Foraging Relatives: Growth and Survival of Bruchid Beetle Larvae. Journal of Insect Behavior, 2008, 21, 375-386.	0.7	12
129	Sex combs, allometry, and asymmetry in Drosophila. Biological Journal of the Linnean Society, 2011, 103, 923-934.	1.6	12
130	Lifespan and age, but not residual reproductive value or condition, are related to behaviour in wild field crickets. Ethology, 2018, 124, 338-346.	1.1	12
131	Slower senescence in a wild insect population in years with a more female-biased sex ratio. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190286.	2.6	12
132	Telomere length is highly heritable and independent of growth rate manipulated by temperature in field crickets. Molecular Ecology, 2022, 31, 6128-6140.	3.9	12
133	An experimental investigation of a new ideal free distribution model. Evolutionary Ecology, 1996, 10, 45-49.	1.2	11
134	Does Publication in Top-Tier Journals Affect Reviewer Behavior?. PLoS ONE, 2009, 4, e6283.	2.5	10
135	The way the world might be. Journal of Evolutionary Biology, 2005, 18, 1205-1208.	1.7	9
136	New microsatellite loci isolated from the field cricket <i>Gryllus bimaculatus</i> characterized in two cricket species, <i>Gryllus bimaculatus</i> and <i>Gryllus campestris</i> Molecular Ecology Resources, 2008, 8, 1015-1019.	4.8	9
137	Sexual selection in the cricket Gryllus bimaculatus: no good genes?. Genetica, 2008, 132, 287-294.	1.1	8
138	Sexual selection in the cricket Gryllus bimaculatus: no good genes?. Genetica, 2008, 134, 129-136.	1.1	8
139	The effect of size and sex ratio experiences on reproductive competition in <i>Nicrophorus vespilloides</i> burying beetles in the wild. Journal of Evolutionary Biology, 2016, 29, 541-550.	1.7	8
140	Dynamic networks of fighting and mating in a wild cricket population. Animal Behaviour, 2019, 155, 179-188.	1.9	8
141	The potential influence of morphology on the evolutionary divergence of an acoustic signal. Journal of Evolutionary Biology, 2014, 27, 2163-2176.	1.7	7
142	Divergence in Potential Contact Pheromones and Genital Morphology Among Sympatric Song Types of the Bush Cricket Mecopoda elongata. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	7
143	Using radiotelemetry to study behavioural thermoregulation in insects under field conditions. Methods in Ecology and Evolution, 2019, 10, 1773-1782.	5.2	7
144	Males and females differ in how their behaviour changes with age in wild crickets. Animal Behaviour, 2020, 164, 1-8.	1.9	7

#	Article	IF	Citations
145	Divergence and reproductive isolation in the early stages of speciation. Genetica, 2002, 116, 291-300.	1.1	7
146	Reinvestigating good genes benefits of mate choice in Drosophila simulans. Biological Journal of the Linnean Society, 2012, 106, 295-306.	1.6	6
147	Evidence for genetic isolation and local adaptation in the field cricket <i>Gryllus campestris</i> Journal of Evolutionary Biology, 2021, 34, 1624-1636.	1.7	6
148	Divergence and reproductive isolation in the early stages of speciation. Contemporary Issues in Genetics and Evolution, 2002, , 291-300.	0.9	6
149	Alphabetical orders. Nature, 1997, 388, 511-511.	27.8	5
150	Mating Behaviour: Promiscuous Mothers Have Healthier Young. Current Biology, 2007, 17, R66-R67.	3.9	5
151	EB Ford revisited: assessing the long-term stability of wing-spot patterns and population genetic structure of the meadow brown butterfly on the Isles of Scilly. Heredity, 2017, 118, 322-329.	2.6	5
152	THE ORIGINS OF PREMATING REPRODUCTIVE ISOLATION: TESTING HYPOTHESES IN THE GRASSHOPPER CHORTHIPPUS PARALLELUS. Evolution; International Journal of Organic Evolution, 2000, 54, 1687.	2.3	4
153	Evolutionarily dynamic sperm. Trends in Ecology and Evolution, 2000, 15, 85-86.	8.7	4
154	Mate Choice: Been There, Done That. Current Biology, 2005, 15, R959-R961.	3.9	4
155	Isolation, characterisation and predicted genome locations of Light-bellied Brent goose (Branta) Tj ETQq1 1 0.78	4314 rgBT 0.8	/Qverlock 1
156	The suitability of VIE tags to assess stock enhancement success in juvenile European lobsters (Homarus gammarus). Aquaculture Research, 2015, 46, 2913-2923.	1.8	4
157	Response to Whittaker: challenges in testing for gender bias. Trends in Ecology and Evolution, 2008, 23, 480-481.	8.7	3
158	Larval Host Preference and Suitability for the Sawfly Mesoneura rufonota among Five Cinnamomun Tree Species. Insects, 2020, 11, 76.	2.2	3
159	Evolution: Inbreeding, Multiple Mating and Embryonic Aid. Current Biology, 2006, 16, R202-R203.	3.9	2
160	Strong, silent types: the rapid, adaptive disappearance of a sexual signal. Trends in Ecology and Evolution, 2007, 22, 226-228.	8.7	2
161	Fertilisation and early developmental barriers to hybridisation in field crickets. BMC Evolutionary Biology, 2013, 13, 43.	3.2	2
162	Discovery of an acoustically locating parasitoid with a potential role in divergence of song types among sympatric populations of the bush cricket Mecopoda elongata. Journal of Orthoptera Research, 2019, 28, 181-186.	1.0	2

#	Article	IF	CITATIONS
163	Measuring the sperm competition successes of field males of the yellow dung fly. Ecological Entomology, 2002, 27, 763-765.	2.2	1
164	Variational Bayesian tracking: Whole track convergence for large-scale ecological video monitoring. , 2013, , .		1
165	Mimicry as deceptive resemblance: beyond the one-trick ponies. , 0, , 441-454.		0
166	Response to Comment on "International Conservation Policy Delivers Benefits for Birds in Europe". Science, 2008, 319, 1042-1042.	12.6	0
167	How big are bigwigs?: a reply to Havens. Frontiers in Ecology and the Environment, 2008, 6, 523-523.	4.0	0
168	Microsatellite loci for the field cricket, Gryllus bimaculatus and their cross-utility in other species of Orthoptera. Molecular Ecology Notes, 2004, .	1.7	0
169	Estimating cetacean population trends from static acoustic monitoring data using Paired Year Ratio Assessment (PYRA). PLoS ONE, 2022, 17, e0264289.	2.5	0