
Katherine S Elvira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9183611/publications.pdf Version: 2024-02-01

KATHEDINE S FLVIDA

#	Article	IF	CITATIONS
1	The past, present and potential for microfluidic reactor technology in chemical synthesis. Nature Chemistry, 2013, 5, 905-915.	6.6	978
2	A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chemical Communications, 2010, 46, 1620.	2.2	81
3	Droplet-Based Microfluidic Platform for High-Throughput, Multi-Parameter Screening of Photosensitizer Activity. Analytical Chemistry, 2013, 85, 8866-8872.	3.2	53
4	Through-Wall Mass Transport as a Modality for Safe Generation of Singlet Oxygen in Continuous Flows. ACS Sustainable Chemistry and Engineering, 2013, 1, 209-213.	3.2	49
5	Microfluidic Technique for the Simultaneous Quantification of Emulsion Instabilities and Lipid Digestion Kinetics. Analytical Chemistry, 2017, 89, 9116-9123.	3.2	34
6	Materials and methods for droplet microfluidic device fabrication. Lab on A Chip, 2022, 22, 859-875.	3.1	32
7	Droplet confinement and leakage: Causes, underlying effects, and amelioration strategies. Biomicrofluidics, 2015, 9, 024119.	1.2	30
8	Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles. Journal of Controlled Release, 2021, 333, 258-268.	4.8	30
9	Microfluidic technologies for drug discovery and development: friend or foe?. Trends in Pharmacological Sciences, 2021, 42, 518-526.	4.0	21
10	A Microfluidic Platform for the Rapid Determination of Distribution Coefficients by Gravity-Assisted Droplet-Based Liquid–Liquid Extraction. Analytical Chemistry, 2015, 87, 6265-6270.	3.2	20
11	Droplet dispensing in digital microfluidic devices: Assessment of long-term reproducibility. Biomicrofluidics, 2012, 6, 22003-2200310.	1.2	19
12	A microfluidic toolbox for cell fusion. Journal of Chemical Technology and Biotechnology, 2016, 91, 16-24.	1.6	14
13	A bespoke microfluidic pharmacokinetic compartment model for drug absorption using artificial cell membranes. Lab on A Chip, 2020, 20, 1898-1906.	3.1	13
14	Enhanced versatility of fluid control in centrifugal microfluidic platforms using two degrees of freedom. Lab on A Chip, 2016, 16, 1197-1205.	3.1	11
15	Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance. Chemical Communications, 2021, 57, 6534-6537.	2.2	11
16	Programmed assembly of bespoke prototissues on a microfluidic platform. Lab on A Chip, 2021, 21, 4574-4585.	3.1	11
17	A plug-and-play modular microcapillary platform for the generation of multicompartmental double emulsions using glass or fluorocarbon capillaries. Lab on A Chip, 2021, 21, 2781-2790.	3.1	10
18	Algae Adhesion onto Silicone is Sensitive to Environment-Induced Surface Restructuring. Langmuir, 2021, 37, 9597-9604.	1.6	5

#	Article	IF	CITATIONS
19	The role of temperature in the formation of human–mimetic artificial cell membranes using droplet interface bilayers (DIBs). Soft Matter, 2021, 17, 8891-8901.	1.2	5
20	Fabrication of Highly Ordered Polycaprolactone Microspheres for In Vitro Drug Delivery Using Microfluidic Technologies. , 0, , .		0