Tingting Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/91832/publications.pdf

Version: 2024-02-01

24 papers 1,180 citations

15 h-index 610482 24 g-index

24 all docs

24 docs citations

24 times ranked 1605 citing authors

#	Article	IF	CITATIONS
1	Fabrication of rutin-protein complexes to form and stabilize bilayer emulsions: Impact of concentration and pretreatment. Food Hydrocolloids, 2022, 122, 107056.	5.6	19
2	Pre-fermentation of rice flour for improving the cooking quality of extruded instant rice. Food Chemistry, 2022, 386, 132757.	4.2	9
3	Arabinoxylan from rice bran protects mice against high-fat diet-induced obesity and metabolic inflammation by modulating gut microbiota and short-chain fatty acids. Food and Function, 2022, 13, 7707-7719.	2.1	10
4	Redox and Other Biological Activities of Tea Catechins That May Affect Health: Mechanisms and Unresolved Issues. Journal of Agricultural and Food Chemistry, 2022, 70, 7887-7899.	2.4	16
5	A new site-specific monoPEGylated \hat{l}^2 -lactoglobulin at the N-terminal: Effect of different molecular weights of mPEG on its conformation and antigenicity. Food Chemistry, 2021, 343, 128402.	4.2	4
6	<i>In vitro $\langle i \rangle$ fecal fermentation profiles and microbiota responses of pulse cell wall polysaccharides: enterotype effect. Food and Function, 2021, 12, 8376-8385.</i>	2.1	7
7	Boosting the value of insoluble dietary fiber to increase gut fermentability through food processing. Food and Function, 2021, 12, 10658-10666.	2.1	13
8	Fabrication of Oil-in-Water Emulsions with Whey Protein Isolate–Puerarin Composites: Environmental Stability and Interfacial Behavior. Foods, 2021, 10, 705.	1.9	12
9	High arabinoxylan fine structure specificity to gut bacteria driven by corn genotypes but not environment. Carbohydrate Polymers, 2021, 257, 117667.	5.1	17
10	Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trends in Food Science and Technology, 2021, 112, 667-675.	7.8	96
11	Effects of creeping fig seed polysaccharide on pasting, rheological, textural properties and in vitro digestibility of potato starch. Food Hydrocolloids, 2021, 118, 106810.	5.6	34
12	Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects. Critical Reviews in Food Science and Nutrition, 2020, 60, 2691-2709.	5. 4	63
13	Cell Wall Integrity of Pulse Modulates the in Vitro Fecal Fermentation Rate and Microbiota Composition. Journal of Agricultural and Food Chemistry, 2020, 68, 1091-1100.	2.4	51
14	Clinical Associations of Thyroid Hormone Levels with the Risk of Atherosclerosis in Euthyroid Type 2 Diabetic Patients in Central China. International Journal of Endocrinology, 2020, 2020, 1-8.	0.6	7
15	Fabrication and characterization of oil-in-water emulsions stabilized by macadamia protein isolate/chitosan hydrochloride composite polymers. Food Hydrocolloids, 2020, 103, 105655.	5.6	45
16	Accelerated aging of rice by controlled microwave treatment. Food Chemistry, 2020, 323, 126853.	4.2	26
17	Chemical Cross-Linking Controls in Vitro Fecal Fermentation Rate of High-Amylose Maize Starches and Regulates Gut Microbiota Composition. Journal of Agricultural and Food Chemistry, 2019, 67, 13728-13736.	2.4	42
18	Green Tea Polyphenols Modify the Gut Microbiome in <i>db/db</i> Mice as Coâ€Abundance Groups Correlating with the Blood Glucose Lowering Effect. Molecular Nutrition and Food Research, 2019, 63, e1801064.	1.5	69

TINGTING CHEN

#	Article	IF	CITATION
19	Physical Inaccessibility of a Resistant Starch Shifts Mouse Gut Microbiota to Butyrogenic Firmicutes. Molecular Nutrition and Food Research, 2019, 63, e1801012.	1.5	49
20	Fabrication of a soluble crosslinked corn bran arabinoxylan matrix supports a shift to butyrogenic gut bacteria. Food and Function, 2019, 10, 4497-4504.	2.1	30
21	Site specific PEGylation of \hat{l}^2 -lactoglobulin at glutamine residues and its influence on conformation and antigenicity. Food Research International, 2019, 123, 623-630.	2.9	10
22	Acid gelation of soluble laccase-crosslinked corn bran arabinoxylan and possible gel formation mechanism. Food Hydrocolloids, 2019, 92, 1-9.	5.6	52
23	Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food and Function, 2017, 8, 1166-1173.	2.1	99
24	Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Scientific Reports, 2017, 7, 2594.	1.6	400