
Chun Hei Antonio Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9183146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Treat cancers by targeting survivin: Just a dream or future reality?. Cancer Treatment Reviews, 2013, 39, 802-811.	3.4	129
3	Survivin – biology and potential as a therapeutic target in oncology. OncoTargets and Therapy, 2013, 6, 1453.	1.0	128
4	Aurora kinase inhibitors in preclinical and clinical testing. Expert Opinion on Investigational Drugs, 2009, 18, 379-398.	1.9	93
5	<scp>YM155</scp> downâ€regulates survivin and <scp>XIAP</scp> , modulates autophagy and induces autophagyâ€dependent <scp>DNA</scp> damage in breast cancer cells. British Journal of Pharmacology, 2015, 172, 214-234.	2.7	79
6	BIRC5/Survivin is a novel ATG12–ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy, 2020, 16, 1296-1313.	4.3	78
7	Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers. Drug Discovery Today, 2015, 20, 578-587.	3.2	68
8	Targeting cathepsin S induces tumor cell autophagy via the EGFR–ERK signaling pathway. Cancer Letters, 2012, 317, 89-98.	3.2	66
9	Recent Advances in Anti-Survivin Treatments for Cancer. Current Medicinal Chemistry, 2010, 17, 1509-1515.	1.2	65
10	Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers. Molecular Cancer, 2009, 8, 43.	7.9	57
11	Autophagy induced by cathepsin S inhibition induces early ROS production, oxidative DNA damage, and cell death via xanthine oxidase. Free Radical Biology and Medicine, 2013, 65, 1473-1486.	1.3	57
12	Aurora kinase inhibitor patents and agents in clinical testing: an update (2011 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 1021-1038.	2.4	57
13	Anti-apoptotic proteins in the autophagic world: an update on functions of XIAP, Survivin, and BRUCE. Journal of Biomedical Science, 2020, 27, 31.	2.6	57
14	Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Frontiers in Pharmacology, 2016, 7, 81.	1.6	53
15	Investigations of survivin: the past, present and future. Frontiers in Bioscience - Landmark, 2011, 16, 952.	3.0	52
16	A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-α therapy. Cancer Cell International, 2010, 10, 36.	1.8	48
17	Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells. Molecular Cancer, 2010, 9, 77.	7.9	47
18	Cancer Cells Acquire Mitotic Drug Resistance Properties Through Beta I-Tubulin Mutations and Alterations in the Expression of Beta-Tubulin Isotypes. PLoS ONE, 2010, 5, e12564.	1.1	41

#	Article	IF	CITATIONS
19	Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Investigational New Drugs, 2012, 30, 508-517.	1.2	41
20	Aurora kinase inhibitor patents and agents in clinical testing: an update (2009 – 10). Expert Opinion on Therapeutic Patents, 2011, 21, 857-884.	2.4	38
21	Disruption of protein–protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target – survivin. RSC Advances, 2016, 6, 31947-31959.	1.7	35
22	Mutation of the PTCH1 gene predicts recurrence of breast cancer. Scientific Reports, 2019, 9, 16359.	1.6	34
23	<i>O⁶</i> -methylguanine DNA methyltransferase repairs platinum-DNA adducts following cisplatin treatment and predicts prognoses of nasopharyngeal carcinoma. International Journal of Cancer, 2015, 137, 1291-1305.	2.3	30
24	HDAC2 and HDAC5 Up-Regulations Modulate Survivin and miR-125a-5p Expressions and Promote Hormone Therapy Resistance in Estrogen Receptor Positive Breast Cancer Cells. Frontiers in Pharmacology, 2017, 8, 902.	1.6	29
25	Proliferative and protective effects of SurR9-C84A on differentiated neural cells. Journal of Neuroimmunology, 2010, 227, 120-132.	1.1	27
26	Chamaecypanone C, a novel skeleton microtubule inhibitor, with anticancer activity by trigger caspase 8-Fas/FasL dependent apoptotic pathway in human cancer cells. Biochemical Pharmacology, 2010, 79, 1261-1271.	2.0	27
27	Agingâ€induced Akt activation involves in agingâ€related pathologies and Aβâ€induced toxicity. Aging Cell, 2019, 18, e12989.	3.0	26
28	Advances in Aurora kinase inhibitor patents. Expert Opinion on Therapeutic Patents, 2009, 19, 321-356.	2.4	24
29	Cancer Targeted Nanoparticles Specifically Induce Apoptosis in Cancer Cells and Spare Normal Cells. Australian Journal of Chemistry, 2012, 65, 5.	0.5	18
30	Locked nucleic acid modified bi-specific aptamer-targeted nanoparticles carrying survivin antagonist towards effective colon cancer therapy. RSC Advances, 2015, 5, 29008-29016.	1.7	18
31	An Updated Review of Smac Mimetics, LCL161, Birinapant, and GDC-0152 in Cancer Treatment. Applied Sciences (Switzerland), 2021, 11, 335.	1.3	17
32	BPR1K653, a Novel Aurora Kinase Inhibitor, Exhibits Potent Anti-Proliferative Activity in MDR1 (P-gp170)-Mediated Multidrug-Resistant Cancer Cells. PLoS ONE, 2011, 6, e23485.	1.1	16
33	The Inducible Nitric-oxide Synthase (iNOS)/Src Axis Mediates Toll-like Receptor 3 Tyrosine 759 Phosphorylation and Enhances Its Signal Transduction, Leading to Interferon-β Synthesis in Macrophages. Journal of Biological Chemistry, 2014, 289, 9208-9220.	1.6	16
34	YM155 and BIRC5 downregulation induce genomic instability via autophagy-mediated ROS production and inhibition in DNA repair. Pharmacological Research, 2021, 166, 105474.	3.1	13
35	Dysfunction of different cellular degradation pathways contributes to specific βâ€amyloid42â€induced pathologies. FASEB Journal, 2018, 32, 1375-1387.	0.2	12
36	The SMAC mimetic LCL161 is a direct ABCB1/MDR1-ATPase activity modulator and BIRC5/Survivin expression down-regulator in cancer cells. Toxicology and Applied Pharmacology, 2020, 401, 115080.	1.3	12

#	Article	IF	CITATIONS
37	Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model. International Journal of Nanomedicine, 2015, 10, 1019.	3.3	10
38	Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study. OncoTargets and Therapy, 2016, 9, 2601.	1.0	8
39	Survivin - caspase protein-protein interaction: Experimental evidence and computational investigations to decipher the hotspot residues for drug targeting. Journal of Molecular Structure, 2021, 1229, 129619.	1.8	8
40	Enhancement of non-homologous end joining DNA repair capacity confers cancer cells resistance to the novel selenophene compound, D-501036. Cancer Letters, 2011, 309, 110-118.	3.2	7
41	Cloning, expression, and purification of the recombinant pro-apoptotic dominant-negative survivin T34A-C84A protein in Escherichia coli. Protein Expression and Purification, 2019, 160, 73-83.	0.6	7
42	E-Cadherin Aptamer-Conjugated Delivery of Doxorubicin for Targeted Inhibition of Prostate Cancer Cells. Australian Journal of Chemistry, 2016, 69, 1108.	0.5	6
43	Challenges in Treating Estrogen Receptor-Positive Breast Cancer. , 0, , .		5
44	Tamoxifen Rechallenge Decreases Metastatic Potential but Increases Cell Viability and Clonogenicity in a Tamoxifen-Mediated Cytotoxicity-Resistant Subline of Human Breast MCF7 Cancer Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 485.	1.8	5
45	Rac1 and Akt Exhibit Distinct Roles in Mediating Aβ-Induced Memory Damage and Learning Impairment. Molecular Neurobiology, 2021, 58, 5224-5238.	1.9	5
46	FTY720 in resistant human epidermal growth factor receptor 2-positive breast cancer. Scientific Reports, 2022, 12, 241.	1.6	5
47	Topical Ophthalmic Formulation of Trichostatin A and SurR9-C84A for Quick Recovery Post-alkali Burn of Corneal Haze. Frontiers in Pharmacology, 2017, 8, 223.	1.6	3
48	The "Dark Side―of autophagy on the maintenance of genome stability: Does it really exist during excessive activation?. Journal of Cellular Physiology, 2022, 237, 178-188.	2.0	3
49	Down-regulation of Survivin enhances sensitivity to BPR0L075 in human cancer cells via caspase-independent mechanisms. Nature Precedings, 2008, , .	0.1	0
50	Abstract 3452: YM155 induces autophagy-dependent cell death in Tamoxifen-resistant breast cancer cells , 2013, , .		0
51	Caspase-Independent Apoptosis. , 2014, , 823-824.		Ο
52	Abstract 3303: Survivin negatively-regulates autophagy through interference with the formation of Atg5-Atg12-Atg16L complex in breast cancer cells. , 2017, , .		0
53	Introduction to this special issue - ��Autophagy and Cancer: current biology and drug development��. Journal of Cancer Metastasis and Treatment, 0, 2019, .	0.5	Ο
54	Modulating tumor immune microenvironment by the STK11/LKB1 signaling in breast cancer Journal of Clinical Oncology, 2020, 38, e15185-e15185.	0.8	0

0

#	Article	IF	CITATIONS
55	Abstract 2487: Mutation of theSTK11gene predicts recurrence of breast cancer. , 2020, , .		0

56 Early AÎ²42 Exposure Causes Learning Impairment in Later Life. , 2022, 13, 868.