
Mikhail Gelfand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9183120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655. Journal of Bacteriology, 2003, 185, 5673-5684.	2.2	678
2	Frequent Alternative Splicing of Human Genes. Genome Research, 1999, 9, 1288-1293.	5.5	462
3	Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes. Journal of Biological Chemistry, 2003, 278, 41148-41159.	3.4	417
4	Comparative Genomics of Thiamin Biosynthesis in Procaryotes. Journal of Biological Chemistry, 2002, 277, 48949-48959.	3.4	326
5	Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Research, 2016, 26, 70-84.	5.5	311
6	Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Research, 2002, 30, 3141-3151.	14.5	308
7	Gene recognition via spliced sequence alignment Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9061-9066.	7.1	284
8	A Novel Class of Modular Transporters for Vitamins in Prokaryotes. Journal of Bacteriology, 2009, 191, 42-51.	2.2	280
9	Riboswitches: the oldest mechanism for the regulation of gene expression?. Trends in Genetics, 2004, 20, 44-50.	6.7	274
10	Comparative and Functional Genomic Analysis of Prokaryotic Nickel and Cobalt Uptake Transporters: Evidence for a Novel Group of ATP-Binding Cassette Transporters. Journal of Bacteriology, 2006, 188, 317-327.	2.2	269
11	Dissimilatory Metabolism of Nitrogen Oxides in Bacteria: Comparative Reconstruction of Transcriptional Networks. PLoS Computational Biology, 2005, 1, e55.	3.2	260
12	Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics, 2009, 10, 78.	2.8	260
13	Comparative genomics of bacterial zinc regulons: Enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9912-9917.	7.1	256
14	Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks. PLoS ONE, 2007, 2, e955.	2.5	212
15	Increase of functional diversity by alternative splicing. Trends in Genetics, 2003, 19, 124-128.	6.7	208
16	Conservation of the Biotin Regulon and the BirA Regulatory Signal in Eubacteria and Archaea. Genome Research, 2002, 12, 1507-1516.	5.5	196
17	A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends in Genetics, 1999, 15, 439-442.	6.7	191
18	Widespread splicing changes in human brain development and aging. Molecular Systems Biology, 2013, 9. 633.	7.2	183

#	Article	IF	CITATIONS
19	RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Research, 2010, 38, D111-D118.	14.5	172
20	Combining diverse evidence for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Research, 1998, 26, 2941-2947.	14.5	171
21	Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. Rna, 2003, 9, 1084-1097.	3.5	170
22	Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch?. Nucleic Acids Research, 2003, 31, 6748-6757.	14.5	170
23	Genome-Wide Analysis of Cell Type-Specific Gene Transcription during Spore Formation in Clostridium difficile. PLoS Genetics, 2013, 9, e1003756.	3.5	167
24	Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. Nucleic Acids Research, 2000, 28, 695-705.	14.5	166
25	How gene order is influenced by the biophysics of transcription regulation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13948-13953.	7.1	165
26	Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biology, 2004, 5, R90.	9.6	162
27	Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Research, 2004, 32, 3340-3353.	14.5	159
28	Pro-Frame: similarity-based gene recognition in eukaryotic DNA sequences with errors. Bioinformatics, 2001, 17, 13-15.	4.1	144
29	Computational Reconstruction of Iron- and Manganese-Responsive Transcriptional Networks in α-Proteobacteria. PLoS Computational Biology, 2006, 2, e163.	3.2	138
30	Evaluation and Comparison of Current Fetal Ultrasound Image Segmentation Methods for Biometric Measurements: A Grand Challenge. IEEE Transactions on Medical Imaging, 2014, 33, 797-813.	8.9	137
31	Lowâ€molecularâ€weight postâ€translationally modified microcins. Molecular Microbiology, 2007, 65, 1380-1394.	2.5	132
32	De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics, 2011, 12, 30.	2.8	132
33	RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach. Nucleic Acids Research, 2010, 38, W299-W307.	14.5	130
34	Low conservation of alternative splicing patterns in the human and mouse genomes. Human Molecular Genetics, 2003, 12, 1313-1320.	2.9	128
35	Using Orthologous and Paralogous Proteins to Identify Specificity-determining Residues in Bacterial Transcription Factors. Journal of Molecular Biology, 2002, 321, 7-20.	4.2	127
36	Prediction of Function in DNA Sequence Analysis. Journal of Computational Biology, 1995, 2, 87-115.	1.6	125

#	Article	IF	CITATIONS
37	Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Research, 1997, 25, 2430-2439.	14.5	124
38	Software for analysis of bacterial genomes. Molecular Biology, 2000, 34, 222-231.	1.3	123
39	Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. Nucleic Acids Research, 1999, 27, 2981-2989.	14.5	120
40	Comparative Genomics and Experimental Characterization of N-Acetylglucosamine Utilization Pathway of Shewanella oneidensis. Journal of Biological Chemistry, 2006, 281, 29872-29885.	3.4	120
41	Comparative genomic analysis of T-box regulatory systems in bacteria. Rna, 2008, 14, 717-735.	3.5	120
42	Comparative Genomics of Regulation of Fatty Acid and Branched-Chain Amino Acid Utilization in Proteobacteria. Journal of Bacteriology, 2009, 191, 52-64.	2.2	115
43	Evolution of Pan-Genomes of Escherichia coli, Shigella spp., and Salmonella enterica. Journal of Bacteriology, 2013, 195, 2786-2792.	2.2	115
44	Automated selection of positions determining functional specificity of proteins by comparative analysis of orthologous groups in protein families. Protein Science, 2004, 13, 443-456.	7.6	110
45	Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria. Microbiology (United Kingdom), 2004, 150, 3571-3590.	1.8	108
46	Systematic prediction of control proteins and their DNA binding sites. Nucleic Acids Research, 2009, 37, 441-451.	14.5	102
47	GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution. PLoS ONE, 2015, 10, e0132618.	2.5	102
48	Comparative analysis of FUR regulons in gamma-proteobacteria. Nucleic Acids Research, 2001, 29, 5195-5206.	14.5	100
49	Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing. Nucleic Acids Research, 2001, 29, 2338-2348.	14.5	99
50	A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics, 2005, 21, 2240-2245.	4.1	95
51	RegTransBasea database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucleic Acids Research, 2007, 35, D407-D412.	14.5	95
52	Genome-Wide Molecular Clock and Horizontal Gene Transfer in Bacterial Evolution. Journal of Bacteriology, 2004, 186, 6575-6585.	2.2	93
53	Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other α-proteobacteria. BioMetals, 2007, 20, 501-511.	4.1	92
54	SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins. Nucleic Acids Research, 2004, 32, W424-W428.	14.5	89

#	Article	IF	CITATIONS
55	Bioinformatics classification and functional analysis of PhoH homologs. In Silico Biology, 2003, 3, 3-15.	0.9	84
56	Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila. Nature Communications, 2019, 10, 1176.	12.8	83
57	Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biology, 2014, 11, 146-155.	3.1	82
58	A metabolic network in the evolutionary context: Multiscale structure and modularity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8774-8779.	7.1	77
59	Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiology Letters, 2001, 205, 305-314.	1.8	76
60	Comparative genomics and evolution of regulons of the Lacl-family transcription factors. Frontiers in Microbiology, 2014, 5, 294.	3.5	76
61	Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Research, 2009, 37, 4533-4544.	14.5	71
62	Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nature Communications, 2014, 5, 3584.	12.8	70
63	Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis – a rich resource to identify new transcripts, proteins and to study gene regulation. BMC Genomics, 2016, 17, 302.	2.8	70
64	RegTransBase – a database of regulatory sequences and interactions based on literature: a resource for investigating transcriptional regulation in prokaryotes. BMC Genomics, 2013, 14, 213.	2.8	69
65	Identification of a bacterial regulatory system for ribonucleotide reductases by phylogenetic profiling. Trends in Genetics, 2005, 21, 385-389.	6.7	68
66	Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiology Letters, 2004, 234, 357-370.	1.8	67
67	Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Research, 2008, 36, 2032-2046.	14.5	67
68	Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiology, 2006, 6, 49.	3.3	66
69	Nitrogen Fixation and Molecular Oxygen: Comparative Genomic Reconstruction of Transcription Regulation in Alphaproteobacteria. Frontiers in Microbiology, 2016, 7, 1343.	3.5	66
70	Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota. Frontiers in Microbiology, 2017, 8, 195.	3.5	66
71	A Polar Mechanism Coordinates Different Regions of Alternative Splicing within a Single Gene. Molecular Cell, 2005, 19, 393-404.	9.7	63
72	Comparative analysis of regulatory patterns in bacterial genomes. Briefings in Bioinformatics, 2000, 1, 357-371.	6.5	62

#	Article	IF	CITATIONS
73	Evolution of transcriptional regulatory networks in microbial genomes. Current Opinion in Structural Biology, 2006, 16, 420-429.	5.7	61
74	Prediction of the exon-intron structure by a dynamic programming approach. BioSystems, 1993, 30, 173-182.	2.0	60
75	Complete Genome and Proteome of Acholeplasma laidlawii. Journal of Bacteriology, 2011, 193, 4943-4953.	2.2	60
76	Structural analysis of conserved base pairs in protein-DNA complexes. Nucleic Acids Research, 2002, 30, 1704-1711.	14.5	59
77	Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. BMC Genomics, 2011, 12, S3.	2.8	59
78	Evidence for widespread association of mammalian splicing and conserved long-range RNA structures. Rna, 2012, 18, 1-15.	3.5	58
79	Transcriptional regulation of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria. Molecular Microbiology, 2000, 38, 673-683.	2.5	56
80	Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biology, 2001, 2, research0013.1.	9.6	55
81	A transporter of Escherichia coli specific for l- and d-methionine is the prototype for a new family within the ABC superfamily. Archives of Microbiology, 2003, 180, 88-100.	2.2	55
82	Abundance and functional diversity of riboswitches in microbial communities. BMC Genomics, 2007, 8, 347.	2.8	54
83	An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies. Algorithms for Molecular Biology, 2010, 5, 29.	1.2	53
84	ANA HEp-2 cells image classification using number, size, shape and localization of targeted cell regions. Pattern Recognition, 2014, 47, 2360-2366.	8.1	53
85	Genomics of Sponge-Associated Streptomyces spp. Closely Related to Streptomyces albus J1074: Insights into Marine Adaptation and Secondary Metabolite Biosynthesis Potential. PLoS ONE, 2014, 9, e96719.	2.5	51
86	Identification of replication origins in prokaryotic genomes. Briefings in Bioinformatics, 2008, 9, 376-391.	6.5	50
87	Evolutionary Dynamics of Clustered Irregularly Interspaced Short Palindromic Repeat Systems in the Ocean Metagenome. Applied and Environmental Microbiology, 2010, 76, 2136-2144.	3.1	49
88	Order and stochasticity in the folding of individual Drosophila genomes. Nature Communications, 2021, 12, 41.	12.8	49
89	Comparative genomic analysis of regulation of anaerobic respiration in ten genomes from three families of gamma-proteobacteria (Enterobacteriaceae, Pasteurellaceae, Vibrionaceae). BMC Genomics, 2007, 8, 54.	2.8	48
90	Comparative Genomics of the Dormancy Regulons in Mycobacteria. Journal of Bacteriology, 2011, 193, 3446-3452.	2.2	48

#	Article	IF	CITATIONS
91	Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Scientific Reports, 2016, 6, 20768.	3.3	48
92	Comparative Genomics and Evolution of Alternative Splicing:  The Pessimists' Science. Chemical Reviews, 2007, 107, 3407-3430.	47.7	47
93	Computer prediction of the exon-intron structure of mammalian pre-mRNAs. Nucleic Acids Research, 1990, 18, 5865-5869.	14.5	46
94	Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum. Nucleic Acids Research, 2013, 41, 790-803.	14.5	44
95	Regulation of biosynthesis and transport of aromatic amino acids in low-GC Gram-positive bacteria. FEMS Microbiology Letters, 2003, 222, 211-220.	1.8	43
96	Evolution of exon-intron structure and alternative splicing in fruit flies and malarial mosquito genomes. Genome Research, 2006, 16, 505-509.	5.5	43
97	Statistical analysis of mammalian pre-mRNA splicing sites. Nucleic Acids Research, 1989, 17, 6369-6382.	14.5	42
98	Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements. Gene, 2002, 293, 133-140.	2.2	42
99	Regulation and Evolution of Malonate and Propionate Catabolism in Proteobacteria. Journal of Bacteriology, 2012, 194, 3234-3240.	2.2	42
100	Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen Clostridioides difficile. Frontiers in Microbiology, 2020, 11, 1939.	3.5	42
101	ASDB: database of alternatively spliced genes. Nucleic Acids Research, 1999, 27, 301-302.	14.5	41
102	Alternative splicing and protein function. BMC Bioinformatics, 2005, 6, 266.	2.6	41
103	Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria. BMC Microbiology, 2005, 5, 54.	3.3	41
104	Structure and Function of an ADP-Ribose-Dependent Transcriptional Regulator of NAD Metabolism. Structure, 2009, 17, 939-951.	3.3	41
105	ASDB: database of alternatively spliced genes. Nucleic Acids Research, 2000, 28, 296-297.	14.5	40
106	Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. FEMS Microbiology Letters, 2004, 236, 283-290.	1.8	40
107	Application of sorting and next generation sequencing to study 5Î,,-UTR influence on translation efficiency in Escherichia coli. Nucleic Acids Research, 2017, 45, 3487-3502.	14.5	40
108	Global Transcriptional Response of Nitrosomonas europaea to Chloroform and Chloromethane. Applied and Environmental Microbiology, 2007, 73, 3440-3445.	3.1	39

#	Article	IF	CITATIONS
109	Engineering transcription factors with novel DNA-binding specificity using comparative genomics. Nucleic Acids Research, 2009, 37, 2493-2503.	14.5	39
110	Recognition of regulatory sites by genomic comparison. Research in Microbiology, 1999, 150, 755-771.	2.1	38
111	Gene recognition in eukaryotic DNA by comparison of genomic sequences. Bioinformatics, 2001, 17, 1011-1018.	4.1	38
112	Combining specificity determining and conserved residues improves functional site prediction. BMC Bioinformatics, 2009, 10, 174.	2.6	37
113	Genome analysis of E. coli isolated from Crohn's disease patients. BMC Genomics, 2017, 18, 544.	2.8	37
114	Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiology Letters, 2004, 234, 357-370.	1.8	37
115	Starts of bacterial genes: estimating the reliability of computer predictions. Gene, 1999, 234, 257-265.	2.2	36
116	Fast rate of evolution in alternatively spliced coding regions of mammalian genes. BMC Genomics, 2006, 7, 84.	2.8	36
117	Glutamine versus Ammonia Utilization in the NAD Synthetase Family. PLoS ONE, 2012, 7, e39115.	2.5	36
118	Pangenomic Definition of Prokaryotic Species and the Phylogenetic Structure of Prochlorococcus spp Frontiers in Microbiology, 2018, 9, 428.	3.5	36
119	Determination of mutual orientation of identical particles from their projections by the moments method. Ultramicroscopy, 1988, 25, 317-327.	1.9	35
120	Performance-Guarantee Gene Predictions via Spliced Alignment. Genomics, 1998, 51, 332-339.	2.9	34
121	Comparative Genomic Analysis of the Hexuronate Metabolism Genes and Their Regulation in Gammaproteobacteria. Journal of Bacteriology, 2011, 193, 3956-3963.	2.2	34
122	Statistical Analysis of the Exon-Intron Structure of Higher and Lower Eukaryote Genes. Journal of Biomolecular Structure and Dynamics, 1999, 17, 281-288.	3.5	32
123	Mining sequence annotation databanks for association patterns. Bioinformatics, 2005, 21, iii49-iii57.	4.1	32
124	Temporal Regulation of Viral Transcription during Development of Thermus thermophilus Bacteriophage ï•YS40. Journal of Molecular Biology, 2007, 366, 420-435.	4.2	32
125	Computational analysis of splicing errors and mutations in human transcripts. BMC Genomics, 2008, 9, 13.	2.8	32
126	Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria. FEMS Microbiology Letters, 2001, 205, 315-322.	1.8	31

#	Article	IF	CITATIONS
127	Restriction–modification systems and bacteriophage invasion: Who wins?. Journal of Theoretical Biology, 2010, 266, 550-559.	1.7	30
128	Genome rearrangements and selection in multi-chromosome bacteria Burkholderia spp BMC Genomics, 2018, 19, 965.	2.8	30
129	Comparative Genomic Analysis of Holospora spp., Intranuclear Symbionts of Paramecia. Frontiers in Microbiology, 2018, 9, 738.	3.5	29
130	Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria. Journal of Molecular Microbiology and Biotechnology, 2001, 3, 529-43.	1.0	28
131	Segmentation of yeast DNA using hidden Markov models. Bioinformatics, 1999, 15, 980-986.	4.1	27
132	Computational identification of BioR, a transcriptional regulator of biotin metabolism inAlphaproteobacteria, and of its binding signal. FEMS Microbiology Letters, 2006, 255, 102-107.	1.8	27
133	Transcriptional regulation of the methionine and cysteine transport and metabolism in streptococci. FEMS Microbiology Letters, 2007, 276, 207-215.	1.8	27
134	Purifying selection in mitochondria, free-living and obligate intracellular proteobacteria. BMC Evolutionary Biology, 2007, 7, 17.	3.2	27
135	Asymmetric and non-uniform evolution of recently duplicated human genes. Biology Direct, 2010, 5, 54.	4.6	27
136	Conserved and species-specific alternative splicing in mammalian genomes. BMC Evolutionary Biology, 2007, 7, 249.	3.2	26
137	Translation at first sight: the influence of leading codons. Nucleic Acids Research, 2020, 48, 6931-6942.	14.5	26
138	Single-cell Hi-C data analysis: safety in numbers. Briefings in Bioinformatics, 2021, 22, .	6.5	26
139	Using orthologous and paralogous proteins to identify specificity determining residues. Genome Biology, 2002, 3, preprint0002.1.	9.6	25
140	Comparative genomics and functional annotation of bacterial transporters. Physics of Life Reviews, 2008, 5, 22-49.	2.8	25
141	A Novel Intra-U1 snRNP Cross-Regulation Mechanism: Alternative Splicing Switch Links U1C and U1-70K Expression. PLoS Genetics, 2013, 9, e1003856.	3.5	25
142	Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs. BMC Genomics, 2014, 15, 202.	2.8	25
143	Evolution of the Exon-Intron Structure in Ciliate Genomes. PLoS ONE, 2016, 11, e0161476.	2.5	25
144	Cooption of heat shock regulatory system for anhydrobiosis in the sleeping chironomid <i>Polypedilum vanderplanki</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2477-E2486.	7.1	25

#	Article	IF	CITATIONS
145	Towards practical applications in quantum computational biology. Nature Computational Science, 2021, 1, 114-119.	8.0	24
146	SELEX_DB: a database on in vitro selected oligomers adapted for recognizing natural sites and for analyzing both SNPs and site-directed mutagenesis data. Nucleic Acids Research, 2002, 30, 195-199.	14.5	23
147	EVOLUTION OF THE NADR REGULON IN ENTEROBACTERIACEAE. Journal of Bioinformatics and Computational Biology, 2005, 03, 1007-1019.	0.8	22
148	Regulation of nitrogen metabolism in gram-positive bacteria. Molecular Biology, 2006, 40, 829-836.	1.3	22
149	Positive Selection in Alternatively Spliced Exons of Human Genes. American Journal of Human Genetics, 2008, 83, 94-98.	6.2	22
150	Comparative approach to analysis of regulation in complete genomes: multidrug resistance systems in gamma-proteobacteria. Journal of Molecular Microbiology and Biotechnology, 2001, 3, 319-24.	1.0	22
151	Evolution of the Exon–Intron Structure and Alternative Splicing of the MACE-A Family of Cancer/Testis Antigens. Journal of Molecular Evolution, 2004, 59, 620-631.	1.8	21
152	Temporal Regulation of Gene Expression of the Escherichia coli Bacteriophage phiEco32. Journal of Molecular Biology, 2012, 416, 389-399.	4.2	21
153	Comparative Genomic Analysis of the Regulation of Aromatic Metabolism in Betaproteobacteria. Frontiers in Microbiology, 2019, 10, 642.	3.5	21
154	Influence of the spacer region between the Shine–Dalgarno box and the start codon for fineâ€ŧuning of the translation efficiency in <i>Escherichia coli</i> . Microbial Biotechnology, 2020, 13, 1254-1261.	4.2	21
155	Comparative Genomics of Transcriptional Regulation of Methionine Metabolism in Proteobacteria. PLoS ONE, 2014, 9, e113714.	2.5	20
156	Sequenceâ€derived structural features driving proteolytic processing. Proteomics, 2014, 14, 42-50.	2.2	20
157	Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics, 2019, 20, 710.	2.8	20
158	Functional implications of splicing polymorphisms in the human genome. Human Molecular Genetics, 2013, 22, 3449-3459.	2.9	19
159	Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure. Epigenetics and Chromatin, 2017, 10, 35.	3.9	19
160	New Intranuclear Symbiotic Bacteria from Macronucleus of Paramecium putrinum—"Candidatus Gortzia Yakutica― Diversity, 2020, 12, 198.	1.7	19
161	Simplification of Ribosomes in Bacteria with Tiny Genomes. Molecular Biology and Evolution, 2021, 38, 58-66.	8.9	19
162	Statistical analysis and prediction of the exonic structure of human genes. Journal of Molecular Evolution, 1992, 35, 239-52.	1.8	18

#	Article	IF	CITATIONS
163	Evolution of transcription factor DNA binding sites. Gene, 2005, 347, 255-263.	2.2	18
164	Comparative Genomics of CytR, an Unusual Member of the LacI Family of Transcription Factors. PLoS ONE, 2012, 7, e44194.	2.5	16
165	Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. FEMS Microbiology Letters, 2004, 236, 283-290.	1.8	16
166	Spatial Proximity and Similarity of the Epigenetic State of Genome Domains. PLoS ONE, 2012, 7, e33947.	2.5	15
167	Horizontal gene transfer and genome evolution in Methanosarcina. BMC Evolutionary Biology, 2015, 15, 102.	3.2	15
168	Algorithms and software for support of gene identification experiments. Bioinformatics, 1998, 14, 14-19.	4.1	14
169	Common and specific amino acid residues in the prokaryotic polypeptide release factors RF1 and RF2: possible functional implications. Nucleic Acids Research, 2005, 33, 5226-5234.	14.5	14
170	Weak Negative and Positive Selection and the Drift Load at Splice Sites. Genome Biology and Evolution, 2014, 6, 1437-1447.	2.5	14
171	Conservation, evolution, and regulation of splicing during prefrontal cortex development in humans, chimpanzees, and macaques. Rna, 2018, 24, 585-596.	3.5	14
172	Combinatorial approaches to gene recognition. Computers & Chemistry, 1997, 21, 229-235.	1.2	13
173	Heat Shock (σ ³² and HrcA/CIRCE) Regulons in β-, γ- and ε-Proteobacteria. Journal of Molecular Microbiology and Biotechnology, 2003, 6, 174-181.	1.0	13
174	Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata (Scleractinia) and Gorgonia ventalina (Alcyonacea). Scientific Reports, 2018, 8, 11563.	3.3	13
175	High Rates of Genome Rearrangements and Pathogenicity of Shigella spp Frontiers in Microbiology, 2021, 12, 628622.	3.5	13
176	Adaptive evolution at mRNA editing sites in soft-bodied cephalopods. PeerJ, 2020, 8, e10456.	2.0	13
177	Recognition of Genes in Human DNA Sequences. Journal of Computational Biology, 1996, 3, 223-234.	1.6	12
178	Comparative genomic analysis of fungal TPP-riboswitches. Fungal Genetics and Biology, 2018, 114, 34-41.	2.1	12
179	Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow. BMC Evolutionary Biology, 2019, 19, 83.	3.2	12
180	Bacteriocin Production by Gram-Positive Bacteria and the Mechanisms of Transcriptional Regulation. Russian Journal of Genetics, 2002, 38, 628-641.	0.6	11

#	Article	IF	CITATIONS
181	Evolutionary patterns of phosphorylated serines. Biology Direct, 2011, 6, 8.	4.6	11
182	Analysis of gene expression and mutation data points on contribution of transcription to the mutagenesis by APOBEC enzymes. NAR Cancer, 2021, 3, zcab025.	3.1	11
183	A machine learning framework for the prediction of chromatin folding in <i>Drosophila</i> using epigenetic features. PeerJ Computer Science, 2020, 6, e307.	4.5	11
184	Genome rearrangements and phylogeny reconstruction in <i>Yersinia pestis</i> . PeerJ, 2018, 6, e4545.	2.0	11
185	BATMAS30: Amino acid substitution matrix for alignment of bacterial transporters. Proteins: Structure, Function and Bioinformatics, 2003, 51, 85-95.	2.6	10
186	RECOGNITION OF TRANSMEMBRANE SEGMENTS IN PROTEINS: REVIEW AND CONSISTENCY-BASED BENCHMARKING OF INTERNET SERVERS. Journal of Bioinformatics and Computational Biology, 2006, 04, 1033-1056.	0.8	10
187	Evolution of transcriptional regulation in closely related bacteria. BMC Evolutionary Biology, 2012, 12, 200.	3.2	10
188	Changes in snoRNA and snRNA abundance in the human, chimpanzee, macaque and mouse brain. Genome Biology and Evolution, 2016, 8, evw038.	2.5	10
189	Purine Regulon of Gamma-Proteobacteria: A Detailed Description. Russian Journal of Genetics, 2002, 38, 1015-1025.	0.6	9
190	Small Open Reading Frames, Non-Coding RNAs and Repetitive Elements in Bradyrhizobium japonicum USDA 110. PLoS ONE, 2016, 11, e0165429.	2.5	9
191	Genetic language: metaphore or analogy?. BioSystems, 1993, 30, 277-288.	2.0	8
192	Title is missing!. Molecular Biology, 2001, 35, 862-866.	1.3	8
193	Tree Reconciliation: Reconstruction of Species Phylogeny by Phylogenetic Gene Trees. Molecular Biology, 2002, 36, 650-658.	1.3	8
194	Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases. Proteins: Structure, Function and Bioinformatics, 2006, 64, 1001-1009.	2.6	8
195	EDAS—A database of alternatively spliced human genes. Biophysics (Russian Federation), 2006, 51, 523-526.	0.7	8
196	COMPARATIVE GENOMICS OF TRANSCRIPTIONAL REGULATION IN YEASTS AND ITS APPLICATION TO IDENTIFICATION OF A CANDIDATE ALPHA-ISOPROPYLMALATE TRANSPORTER. Journal of Bioinformatics and Computational Biology, 2006, 04, 981-998.	0.8	8
197	OVERLAPPING ALTERNATIVE DONOR SPLICE SITES IN THE HUMAN GENOME. Journal of Bioinformatics and Computational Biology, 2007, 05, 991-1004.	0.8	8
198	Correlated Evolution of Nucleotide Positions within Splice Sites in Mammals. PLoS ONE, 2015, 10, e0144388.	2.5	8

#	Article	IF	CITATIONS
199	The genes of the sulphoquinovose catabolism in Escherichia coli are also associated with a previously unknown pathway of lactose degradation. Scientific Reports, 2018, 8, 3177.	3.3	8
200	Structural and biochemical characterization of a novel ZntB (CmaX) transporter protein from Pseudomonas aeruginosa. International Journal of Biological Macromolecules, 2021, 184, 760-767.	7.5	8
201	Reconstruction of a String from Substring Precedence Data. Journal of Computational Biology, 1995, 2, 371-381.	1.6	7
202	Statistical analysis of complete bacterial genomes: Avoidance of palindromes and restriction-modification systems. Molecular Biology, 2000, 34, 215-221.	1.3	7
203	Computer Analysis of Regulatory Signals in Bacterial Genomes. Fnr Binding Sites. Molecular Biology, 2001, 35, 853-861.	1.3	7
204	Title is missing!. Molecular Biology, 2003, 37, 716-722.	1.3	7
205	No statistical support for correlation between the positions of protein interaction sites and alternatively spliced regions. BMC Bioinformatics, 2004, 5, 41.	2.6	7
206	Bacterial cis-regulatory RNA structures. Molecular Biology, 2006, 40, 541-550.	1.3	7
207	Rodent-specific alternative exons are more frequent in rapidly evolving genes and in paralogs. BMC Evolutionary Biology, 2009, 9, 142.	3.2	7
208	Identification of Position-Specific Correlations between DNA-Binding Domains and Their Binding Sites. Application to the MerR Family of Transcription Factors. PLoS ONE, 2016, 11, e0162681.	2.5	7
209	Large-Scale Identification and Analysis of C-Proteins. Methods in Molecular Biology, 2010, 674, 269-282.	0.9	7
210	Extendable words in nucleotide sequences. Bioinformatics, 1992, 8, 129-135.	4.1	6
211	Exact mapping of prokaryotic gene starts. Briefings in Bioinformatics, 2002, 3, 181-194.	6.5	6
212	Search for Alternative RNA Secondary Structures Regulating Expression of Bacterial Genes. Molecular Biology, 2003, 37, 707-715.	1.3	6
213	Regulation of Nitrate and Nitrite Respiration in Î ³ -Proteobacteria: A Comparative Genomics Study. Molecular Biology, 2005, 39, 727-740.	1.3	6
214	Regulation of methionine/cysteine biosynthesis in Corynebacterium glutamicum and related organisms. Molecular Biology, 2007, 41, 126-136.	1.3	6
215	Computational method for predicting protein functional sites with the use of specificity determinants. Molecular Biology, 2007, 41, 137-147.	1.3	6
216	Biases in read coverage demonstrated by interlaboratory and interplatform comparison of 117 mRNA and genome sequencing experiments. BMC Bioinformatics, 2012, 13, S4.	2.6	6

#	Article	IF	CITATIONS
217	Natural variation of gene models in Drosophila melanogaster. BMC Genomics, 2015, 16, 198.	2.8	6
218	Comparative Analysis of the IclR-Family of Bacterial Transcription Factors and Their DNA-Binding Motifs: Structure, Positioning, Co-Evolution, Regulon Content. Frontiers in Microbiology, 2021, 12, 675815.	3.5	6
219	OUP accepted manuscript. Nucleic Acids Research, 2022, , .	14.5	6
220	Spatial rotational alignment of identical particles in the case of (almost) coaxial projections. Ultramicroscopy, 1989, 27, 301-306.	1.9	5
221	Prediction of the exon-intron structure by comparison of genomic sequences. Molecular Biology, 2000, 34, 200-206.	1.3	5
222	Evolution of Regulatory Motifs of Bacterial Transcription Factors. In Silico Biology, 2010, 10, 163-183.	0.9	5
223	History of chromosome rearrangements reflects the spatial organization of yeast chromosomes. Journal of Bioinformatics and Computational Biology, 2016, 14, 1641002.	0.8	5
224	Phospho-islands and the evolution of phosphorylated amino acids in mammals. PeerJ, 2020, 8, e10436.	2.0	5
225	Perspectives for the reconstruction of 3D chromatin conformation using single cell Hi-C data. PLoS Computational Biology, 2021, 17, e1009546.	3.2	5
226	Sugar Lego: gene composition of bacterial carbohydrate metabolism genomic loci. Biology Direct, 2017, 12, 28.	4.6	4
227	Neanderthal and Denisovan ancestry in Papuans: A functional study. Journal of Bioinformatics and Computational Biology, 2018, 16, 1840011.	0.8	4
228	Spliced alignment: A new approach to gene recognition. Lecture Notes in Computer Science, 1996, , 141-158.	1.3	4
229	Sequencing Potential of Nested Strand Hybridization. Journal of Computational Biology, 1995, 2, 383-395.	1.6	3
230	Bayesian Approach to DNA Segmentation into Regions with Different Average Nucleotide Composition. Lecture Notes in Computer Science, 2001, , 57-73.	1.3	3
231	Identification of Horizontal Gene Transfer from Phylogenetic Gene Trees. Molecular Biology, 2003, 37, 571-584.	1.3	3
232	Use of the flux model of amino acid metabolism of Escherichia coli. Biochemistry (Moscow), 2006, 71, 1256-1260.	1.5	3
233	FANS-REF: a bibliography on statistics and functional analysis of nucleotide sequences. Bioinformatics, 1995, 11, 541-541.	4.1	2
234	Algorithm of Regulatory Signal Recognition in DNA Sequences. Molecular Biology, 2001, 35, 841-848.	1.3	2

#	Article	IF	CITATIONS
235	Doing Science in Uncertain Times. PLoS Biology, 2004, 2, e214.	5.6	2
236	Prediction and Computer Analysis of the Exon–Intron Structure of Human Genes. Molecular Biology, 2004, 38, 70-77.	1.3	2
237	Evolutionary differences between alternative and constitutive protein-coding regions of alternatively spliced genes of Drosophila. Biophysics (Russian Federation), 2006, 51, 515-522.	0.7	2
238	Taxon-specific regulation of the SOS response in Î ³ -proteobacteria. Molecular Biology, 2007, 41, 827-835.	1.3	2
239	Regulation of multidrug resistance genes by transcription factors of the BltR subfamily. Molecular Biology, 2011, 45, 658-666.	1.3	2
240	Machine learning study of DNA binding by transcription factors from the LacI family. Molecular Biology, 2011, 45, 667-679.	1.3	2
241	What is to be done about Russian science?. Nature, 2013, 500, 379-379.	27.8	2
242	RNA editing: Classical cases and outlook of new technologies. Molecular Biology, 2014, 48, 11-15.	1.3	2
243	Recombination Processes and Nonlinear Markov Chains. Journal of Computational Biology, 2016, 23, 711-717.	1.6	2
244	Changes in segmentation and setation along the anterior/posterior axis of the homonomous trunk limbs of a remipede (Crustacea, Arthropoda). PeerJ, 2016, 4, e2305.	2.0	2
245	Cumulative contact frequency of a chromatin region is an intrinsic property linked to its function. PeerJ, 2020, 8, e9566.	2.0	2
246	Title is missing!. Russian Journal of Genetics, 2002, 38, 761-765.	0.6	1
247	Low-molecular-weight post-translationally modified microcins. Molecular Microbiology, 2007, 66, 277-277.	2.5	1
248	Rid Russian science of corruption. Nature, 2011, 478, 324-324.	27.8	1
249	Russian science loses to politics. Nature, 2015, 522, 419-419.	27.8	1
250	Detection of homologous recombination in closely related strains. Journal of Bioinformatics and Computational Biology, 2016, 14, 1641001.	0.8	1
251	Predictive models of protease specificity based on quantitative protease-activity profiling data. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140253.	2.3	1
252	HiChew: a Tool for TAD Clustering in Embryogenesis. Lecture Notes in Computer Science, 2020, , 381-388.	1.3	1

#	Article	IF	CITATIONS
253	An algorithm for identification of regulatory signals in unaligned DNA sequences, its testing and parallel implementation. In Silico Biology, 2003, 3, 33-47.	0.9	1
254	The presence of the transposable element ISBsu2 from a cryptic plasmid in chromosomes of some Bacillus subtilis strains. Doklady Biochemistry and Biophysics, 2002, 386, 275-277.	0.9	0
255	Second Moscow Conference on Computational Molecular Biology MCCMB'05. Biophysics (Russian) Tj ETQq1	1.0,7843 0.7	14 rgBT /O
256	Regulation of bacterial respiration: Comparison of microarray and comparative genomics data. Molecular Biology, 2007, 41, 497-512.	1.3	0
257	A model of evolution with constant selective pressure for regulatory DNA sites. BMC Evolutionary Biology, 2007, 7, 125.	3.2	0
258	Some alphabets easily beat Russian letter count. Nature, 2008, 454, 691-691.	27.8	0
259	Benchmarking of programs that predict the position of transmembrane segments in beta-barrel proteins. Biophysics (Russian Federation), 2008, 53, 134-139.	0.7	0
260	Alternative splicing tends to involve protein phosphorylation sites. Molecular Biology, 2009, 43, 528-530.	1.3	0
261	Cometabolic activity of aphid Acyrthosiphon pisum and symbiotic bacterium Buchnera aphidicola APS. Molecular Biology, 2009, 43, 1019-1020.	1.3	0
262	INTRODUCTION. Journal of Bioinformatics and Computational Biology, 2010, 08, v-vii.	0.8	0
263	Dynamic programming: one algorithmic key for many biological locks. , 0, , 66-92.		0
264	Introduction to selected papers from MCCMB 2015. Journal of Bioinformatics and Computational Biology, 2016, 14, 1602003.	0.8	0
265	Prediction of 3D Chromatin Structure Using Recurrent Neural Networks. , 2018, , .		0
266	Reconstruction of the chromatin 3D conformation from single cell Hi-C data. , 2018, , .		0
267	Evolution of Regulatory Systems in Bacteria (Invited Keynote Talk). Lecture Notes in Computer Science, 2009, , 1-4.	1.3	0
268	Machine Learning Study of DNA Binding by Transcription Factors from the Lacl Family. Lecture Notes in Computer Science, 2010, , 15-26.	1.3	0
269	Selectoscope: A Modern Web-App for Positive Selection Analysis of Genomic Data. Lecture Notes in Computer Science, 2016, , 253-257.	1.3	0
270	The channel in transporters is formed by residues that are rare in transmembrane helices. In Silico Biology, 2003, 3, 197-204.	0.9	0