Joel Voss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9183057/publications.pdf

Version: 2024-02-01

94433 95266 5,262 82 37 68 citations h-index g-index papers 83 83 83 4949 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 2014, 345, 1054-1057.	12.6	462
2	Strengthening Individual Memories by Reactivating Them During Sleep. Science, 2009, 326, 1079-1079.	12.6	436
3	Experience-Dependent Neural Integration of Taste and Smell in the Human Brain. Journal of Neurophysiology, 2004, 92, 1892-1903.	1.8	334
4	Validating neural correlates of familiarity. Trends in Cognitive Sciences, 2007, 11, 243-250.	7.8	286
5	A Closer Look at the Hippocampus and Memory. Trends in Cognitive Sciences, 2017, 21, 577-588.	7.8	167
6	An electrophysiological signature of unconscious recognition memory. Nature Neuroscience, 2009, 12, 349-355.	14.8	165
7	A Human Depression Circuit Derived From Focal Brain Lesions. Biological Psychiatry, 2019, 86, 749-758.	1.3	158
8	Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 2011, 14, 115-120.	14.8	151
9	Fluent Conceptual Processing and Explicit Memory for Faces Are Electrophysiologically Distinct. Journal of Neuroscience, 2006, 26, 926-933.	3.6	130
10	Finding meaning in novel geometric shapes influences electrophysiological correlates of repetition and dissociates perceptual and conceptual priming. NeuroImage, 2010, 49, 2879-2889.	4.2	127
11	Brain substrates of implicit and explicit memory: The importance of concurrently acquired neural signals of both memory types. Neuropsychologia, 2008, 46, 3021-3029.	1.6	123
12	Neural correlates of conceptual implicit memory and their contamination of putative neural correlates of explicit memory. Learning and Memory, 2007, 14, 259-267.	1.3	114
13	More than a feeling: Pervasive influences of memory without awareness of retrieval. Cognitive Neuroscience, 2012, 3, 193-207.	1.4	112
14	Stimulation of the Posterior Cortical-Hippocampal Network Enhances Precision of Memory Recollection. Current Biology, 2017, 27, 465-470.	3.9	108
15	Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E402-9.	7.1	102
16	Attention bias and anxiety in young children exposed to family violence. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2015, 56, 1194-1201.	5.2	100
17	Spatial reconstruction by patients with hippocampal damage is dominated by relational memory errors. Hippocampus, 2013, 23, 570-580.	1.9	99
18	Memory reactivation and consolidation during sleep. Learning and Memory, 2004, 11, 664-670.	1.3	90

#	Article	IF	Citations
19	Remembering and knowing: Electrophysiological distinctions at encoding but not retrieval. Neurolmage, 2009, 46, 280-289.	4.2	89
20	Accurate forced-choice recognition without awareness of memory retrieval. Learning and Memory, 2008, 15, 454-459.	1.3	85
21	Conceptual Priming and Familiarity: Different Expressions of Memory during Recognition Testing with Distinct Neurophysiological Correlates. Journal of Cognitive Neuroscience, 2010, 22, 2638-2651.	2.3	84
22	Exposure therapy triggers lasting reorganization of neural fear processing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9203-9208.	7.1	78
23	Long-lasting enhancements of memory and hippocampal-cortical functional connectivity following multiple-day targeted noninvasive stimulation. Hippocampus, 2015, 25, 877-883.	1.9	69
24	Covert rapid action-memory simulation (CRAMS): A hypothesis of hippocampal–prefrontal interactions for adaptive behavior. Neurobiology of Learning and Memory, 2015, 117, 22-33.	1.9	68
25	Evidence for Immediate Enhancement of Hippocampal Memory Encoding by Network-Targeted Theta-Burst Stimulation during Concurrent fMRI. Journal of Neuroscience, 2020, 40, 7155-7168.	3.6	63
26	Establishing a relationship between activity reduction in human perirhinal cortex and priming. Hippocampus, 2009, 19, 773-778.	1.9	61
27	Hippocampal functional connectivity is related to self-reported cognitive concerns in breast cancer patients undergoing adjuvant therapy. Neurolmage: Clinical, 2018, 20, 110-118.	2.7	60
28	Network-targeted stimulation engages neurobehavioral hallmarks of age-related memory decline. Neurology, 2019, 92, e2349-e2354.	1.1	60
29	Assuming too much from â€~familiar' brain potentials. Trends in Cognitive Sciences, 2012, 16, 313-315.	7.8	54
30	Frequencyâ€specific noninvasive modulation of memory retrieval and its relationship with hippocampal network connectivity. Hippocampus, 2019, 29, 595-609.	1.9	53
31	Selective and coherent activity increases due to stimulation indicate functional distinctions between episodic memory networks. Science Advances, 2018, 4, eaar2768.	10.3	51
32	Early-life stress exposure associated with altered prefrontal resting-state fMRI connectivity in young children. Developmental Cognitive Neuroscience, 2016, 19, 107-114.	4.0	50
33	Can the fear recognition deficits associated with callous-unemotional traits be identified in early childhood?. Journal of Clinical and Experimental Neuropsychology, 2016, 38, 672-684.	1.3	49
34	Persistent Enhancement of Hippocampal Network Connectivity by Parietal rTMS Is Reproducible. ENeuro, 2019, 6, ENEURO.0129-19.2019.	1.9	47
35	Real-Time Neural Signals of Perceptual Priming with Unfamiliar Geometric Shapes. Journal of Neuroscience, 2010, 30, 9181-9188.	3.6	46
36	Familiarity and Conceptual Priming Engage Distinct Cortical Networks. Cerebral Cortex, 2008, 18, 1712-1719.	2.9	45

#	Article	IF	Citations
37	Hippocampal contribution to implicit configuration memory expressed via eye movements during scene exploration. Hippocampus, 2015, 25, 1028-1041.	1.9	45
38	The hippocampus uses information just encountered to guide efficient ongoing behavior. Hippocampus, 2014, 24, 154-164.	1.9	40
39	What makes recognition without awareness appear to be elusive? Strategic factors that influence the accuracy of guesses. Learning and Memory, 2010, 17, 460-468.	1.3	39
40	Subtle hippocampal deformities in breast cancer survivors with reduced episodic memory and self-reported cognitive concerns. Neurolmage: Clinical, 2017, 14, 685-691.	2.7	36
41	Hippocampal Binding of Novel Information with Dominant Memory Traces Can Support Both Memory Stability and Change. Journal of Neuroscience, 2014, 34, 2203-2213.	3.6	34
42	Distinguishing the precision of spatial recollection from its success: Evidence from healthy aging and unilateral mesial temporal lobe resection. Neuropsychologia, 2018, 119, 101-106.	1.6	34
43	Episodic memory improvements due to noninvasive stimulation targeting the cortical–hippocampal network: A replication and extension experiment. Brain and Behavior, 2019, 9, e01393.	2.2	30
44	Investigating the Awareness of Remembering. Perspectives on Psychological Science, 2009, 4, 185-199.	9.0	29
45	Hematoma Locations Predicting Delirium Symptoms After Intracerebral Hemorrhage. Neurocritical Care, 2016, 24, 397-403.	2.4	29
46	Exposure to violence and low family income are associated with heightened amygdala responsiveness to threat among adolescents. Developmental Cognitive Neuroscience, 2019, 40, 100709.	4.0	29
47	Reduced prefrontal activation during working and longâ€term memory tasks and impaired patientâ€reported cognition among cancer survivors postchemotherapy compared with healthy controls. Cancer, 2016, 122, 258-268.	4.1	28
48	Distinct Hippocampal versus Frontoparietal Network Contributions to Retrieval and Memory-guided Exploration. Journal of Cognitive Neuroscience, 2017, 29, 1324-1338.	2.3	28
49	Attention bias in the developmental unfolding of postâ€traumatic stress symptoms in young children at risk. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 1083-1091.	5.2	27
50	Electrophysiological correlates of forming memories for faces, names, and face–name associations. Cognitive Brain Research, 2005, 22, 153-164.	3.0	26
51	Am I looking at a cat or a dog? Gaze in the semantic variant of primary progressive aphasia is subject to excessive taxonomic capture. Journal of Neurolinguistics, 2016, 37, 68-81.	1.1	23
52	Structural and Functional MRI Evidence for Distinct Medial Temporal and Prefrontal Roles in Context-dependent Relational Memory. Journal of Cognitive Neuroscience, 2019, 31, 1857-1872.	2.3	22
53	Competitive and cooperative interactions between medial temporal and striatal learning systems. Neuropsychologia, 2020, 136, 107257.	1.6	22
54	Long-term associative memory capacity in man. Psychonomic Bulletin and Review, 2009, 16, 1076-1081.	2.8	21

#	Article	IF	Citations
55	Punishment insensitivity and impaired reinforcement learning in preschoolers. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2014, 55, 154-161.	5.2	21
56	Targeted Stimulation of an Orbitofrontal Network Disrupts Decisions Based on Inferred, Not Experienced Outcomes. Journal of Neuroscience, 2020, 40, 8726-8733.	3.6	21
57	Cerebellar Theta and Beta Noninvasive Stimulation Rhythms Differentially Influence Episodic Memory versus Semantic Prediction. Journal of Neuroscience, 2020, 40, 7300-7310.	3.6	21
58	Brain Networks for Exploration Decisions Utilizing Distinct Modeled Information Types during Contextual Learning. Neuron, 2014, 82, 1171-1182.	8.1	20
59	Hippocampalâ€cortical contributions to strategic exploration during perceptual discrimination. Hippocampus, 2017, 27, 642-652.	1.9	20
60	Active retrieval facilitates across-episode binding by modulating the content of memory. Neuropsychologia, 2014, 63, 154-164.	1.6	19
61	Cortical regions recruited for complex active-learning strategies and action planning exhibit rapid reactivation during memory retrieval. Neuropsychologia, 2011, 49, 3956-3966.	1.6	18
62	Medial temporal contributions to successful faceâ€name learning. Human Brain Mapping, 2012, 33, 1717-1726.	3.6	17
63	Time to Go Our Separate Ways: Opposite Effects of Study Duration on Priming and Recognition Reveal Distinct Neural Substrates. Frontiers in Human Neuroscience, 2010, 4, 227.	2.0	16
64	Basic perceptual changes that alter meaning and neural correlates of recognition memory. Frontiers in Human Neuroscience, 2015, 9, 49.	2.0	16
65	Rapid coordination of effective learning by the human hippocampus. Science Advances, 2021, 7, .	10.3	16
66	Implicit Recognition Based on Lateralized Perceptual Fluency. Brain Sciences, 2012, 2, 22-32.	2.3	15
67	Increased fMRI activity correlations in autobiographical memory versus resting states. Human Brain Mapping, 2018, 39, 4312-4321.	3.6	13
68	Age-related impairments in active learning and strategic visual exploration. Frontiers in Aging Neuroscience, 2014, 6, 19.	3.4	12
69	Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia. Neuropsychologia, 2017, 100, 10-17.	1.6	12
70	Familiarity or Conceptual Priming? Good Question! Comment on Stenberg, Hellman, Johansson, and Rosén (2009). Journal of Cognitive Neuroscience, 2010, 22, 615-617.	2.3	11
71	Bridging divergent neural models of recognition memory: Introduction to the special issue and commentary on key issues. Hippocampus, 2010, 20, 1171-1177.	1.9	10
72	Memory awareness disruptions in amnestic mild cognitive impairment: comparison of multiple awareness types for verbal and visuospatial material. Aging, Neuropsychology, and Cognition, 2019, 26, 577-598.	1.3	10

#	Article	IF	CITATIONS
73	Prefrontal \hat{I}_3 -Burst Stimulation Disrupts the Organizing Influence of Active Short-Term Retrieval on Episodic Memory. ENeuro, 2018, 5, ENEURO.0347-17.2018.	1.9	10
74	Eye movements as probes of lexico-semantic processing in a patient with primary progressive aphasia. Neurocase, 2016, 22, 65-75.	0.6	9
75	Binding among select episodic elements is altered via active short-term retrieval. Learning and Memory, 2015, 22, 360-363.	1.3	8
76	Large-scale network interactions supporting item-context memory formation. PLoS ONE, 2019, 14, e0210167.	2.5	6
77	Recognition without awareness in humans and its implications for animal models of episodic memory. Communicative and Integrative Biology, 2009, 2, 203-204.	1.4	5
78	On the pervasive influences of implicit memory. Cognitive Neuroscience, 2012, 3, 219-226.	1.4	5
79	Adolescent development of context-dependent stimulus-reward association memory and its neural correlates. Frontiers in Human Neuroscience, 2015, 9, 581.	2.0	4
80	Innovative approaches in cognitive aging. Neurobiology of Aging, 2019, 83, 150-154.	3.1	4
81	Hemisphereâ€specific effects of prefrontal thetaâ€burst stimulation on visual recognition memory accuracy and awareness. Brain and Behavior, 2019, 9, e01228.	2.2	4
82	Connections between mechanisms for anosognosia and implicit memory. Cognitive Neuroscience, 2013, 4, 202-203.	1.4	1