
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9182928/publications.pdf Version: 2024-02-01

HENC ZHAO

#	Article	IF	CITATIONS
1	Reproductive Outcomes of In Vitro Fertilization–Intracytoplasmic Sperm Injection after Transcervical Resection of Adhesions: A Retrospective Cohort Study. Journal of Minimally Invasive Gynecology, 2021, 28, 1367-1374.	0.3	6
2	Systematic Study of Immune Cell Diversity in ischemic postconditioning Using High-Dimensional Single-Cell Analysis with Mass Cytometry. , 2021, 12, 812.		3
3	Comment on "Altered Expression of Long Non-coding RNAs in Peripheral Blood Mononuclear Cells of Patients with Alzheimer's Diseaseâ€, Molecular Neurobiology, 2021, 58, 5722-5723.	1.9	0
4	Microarray analysis of circular RNAs in HCT-8 cells infected with Cryptosporidium parvum. Parasites and Vectors, 2021, 14, 485.	1.0	1
5	Sult2b1 deficiency exacerbates ischemic stroke by promoting pro-inflammatory macrophage polarization in mice. Theranostics, 2021, 11, 10074-10090.	4.6	9
6	Silencing the lncRNA <i>Maclpil</i> in pro-inflammatory macrophages attenuates acute experimental ischemic stroke via LCP1 in mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 747-759.	2.4	39
7	Systematic Study of the Immune Components after Ischemic Stroke Using CyTOF Techniques. Journal of Immunology Research, 2020, 2020, 1-13.	0.9	14
8	Hypoxia-Inducible Factor 1α and 2α Have Beneficial Effects in Remote Ischemic Preconditioning Against Stroke by Modulating Inflammatory Responses in Aged Rats. Frontiers in Aging Neuroscience, 2020, 12, 54.	1.7	26
9	Remote ischemic conditioning reduced cerebral ischemic injury by modulating inflammatory responses and ERK activity in type 2 diabetic mice. Neurochemistry International, 2020, 135, 104690.	1.9	22
10	Ischemic postconditioning for stroke treatment: current experimental advances and future directions. Conditioning Medicine, 2020, 3, 104-115.	1.3	1
11	Remote ischemic preconditioning protects against ischemic stroke in streptozotocin-induced diabetic mice via anti-inflammatory response and anti-apoptosis. Brain Research, 2019, 1724, 146429.	1.1	6
12	Myosin1f-mediated neutrophil migration contributes to acute neuroinflammation and brain injury after stroke in mice. Journal of Neuroinflammation, 2019, 16, 77.	3.1	26
13	Intratumoral Susceptibility Signals Reflect Biomarker Status in Gliomas. Scientific Reports, 2019, 9, 17080.	1.6	15
14	The changes of systemic immune responses during the neuroprotection induced by remote ischemic postconditioning against focal cerebral ischemia in mice. Neurological Research, 2019, 41, 26-36.	0.6	16
15	Hypoxia Inducible Factor 1α Plays a Key Role in Remote Ischemic Preconditioning Against Stroke by Modulating Inflammatory Responses in Rats. Journal of the American Heart Association, 2018, 7, .	1.6	67
16	The mTOR cell signaling pathway is crucial to the long-term protective effects of ischemic postconditioning against stroke. Neuroscience Letters, 2018, 676, 58-65.	1.0	7
17	Analysis of long non-coding RNA expression profiles following focal cerebral ischemia in mice. Neuroscience Letters, 2018, 665, 123-129.	1.0	32
18	CD4 T cell deficiency attenuates ischemic stroke, inhibits oxidative stress, and enhances Akt/mTOR survival signaling pathways in mice. Chinese Neurosurgical Journal, 2018, 4, .	0.3	8

#	Article	IF	CITATIONS
19	CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice. Theranostics, 2018, 8, 3530-3543.	4.6	76
20	The underlying mechanisms involved in the protective effects of ischemic postconditioning. Conditioning Medicine, 2018, 1, 73-79.	1.3	8
21	Preconditioning in neuroprotection: From hypoxia to ischemia. Progress in Neurobiology, 2017, 157, 79-91.	2.8	156
22	Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget, 2017, 8, 86535-86547.	0.8	68
23	Characterization of mouse serum exosomal small RNA content: The origins and their roles in modulating inflammatory response. Oncotarget, 2017, 8, 42712-42727.	0.8	26
24	Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms. Journal of Neuroinflammation, 2016, 13, 241.	3.1	45
25	Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients. PLoS ONE, 2016, 11, e0163645.	1.1	184
26	MKEY, a Peptide Inhibitor of CXCL4 CL5 Heterodimer Formation, Protects Against Stroke in Mice. Journal of the American Heart Association, 2016, 5, .	1.6	34
27	The Role of Spleen-Derived Immune Cells in Ischemic Brain Injury. Springer Series in Translational Stroke Research, 2016, , 189-199.	0.1	1
28	Photoacoustic Imaging: Perylene-Diimide-Based Nanoparticles as Highly Efficient Photoacoustic Agents for Deep Brain Tumor Imaging in Living Mice (Adv. Mater. 5/2015). Advanced Materials, 2015, 27, 774-774.	11.1	4
29	Tim-3 cell signaling and iNOS are involved in the protective effects of ischemic postconditioning against focal ischemia in rats. Metabolic Brain Disease, 2015, 30, 483-490.	1.4	20
30	Moderate Hypothermia Inhibits Brain Inflammation and Attenuates Strokeâ€Induced Immunodepression in Rats. CNS Neuroscience and Therapeutics, 2014, 20, 67-75.	1.9	42
31	PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways. Neurobiology of Disease, 2014, 66, 43-52.	2.1	78
32	Mammalian Target of Rapamycin Cell Signaling Pathway Contributes to the Protective Effects of Ischemic Postconditioning Against Stroke. Stroke, 2014, 45, 2769-2776.	1.0	42
33	Akt Isoforms Differentially Protect against Stroke-Induced Neuronal Injury by Regulating mTOR Activities. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1875-1885.	2.4	70
34	Hurdles to Clear Before Clinical Translation of Ischemic Postconditioning Against Stroke. Translational Stroke Research, 2013, 4, 63-70.	2.3	20
35	The protective effects of T cell deficiency against brain injury are ischemic model-dependent in rats. Neurochemistry International, 2013, 62, 265-270.	1.9	35
36	Ischemic postâ€conditioning facilitates brain recovery after stroke by promoting Akt/ <scp>mTOR</scp> activity in nude rats. Journal of Neurochemistry, 2013, 127, 723-732.	2.1	65

#	Article	IF	CITATIONS
37	T Cells Contribute to Stroke-Induced Lymphopenia in Rats. PLoS ONE, 2013, 8, e59602.	1.1	27
38	The Protective Effects of Ischemic Postconditioning in Experimental Stroke. , 2013, , 317-335.		0
39	Using hormetic strategies to improve ischemic preconditioning and postconditioning against stroke. International Journal of Physiology, Pathophysiology and Pharmacology, 2013, 5, 61-72.	0.8	9
40	Distinctive Effects of T Cell Subsets in Neuronal Injury Induced by Cocultured Splenocytes In Vitro and by In Vivo Stroke in Mice. Stroke, 2012, 43, 1941-1946.	1.0	97
41	Prokineticin 2 is an endangering mediator of cerebral ischemic injury. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5475-5480.	3.3	54
42	The Chronic Protective Effects of Limb Remote Preconditioning and the Underlying Mechanisms Involved in Inflammatory Factors in Rat Stroke. PLoS ONE, 2012, 7, e30892.	1.1	75
43	From Rapid to Delayed and Remote Postconditioning: The Evolving Concept of Ischemic Postconditioning in Brain Ischemia. Current Drug Targets, 2012, 13, 173-187.	1.0	98
44	Lithium treatment reduces brain injury induced by focal ischemia with partial reperfusion and the protective mechanisms dispute the importance of akt activity. , 2012, 3, 226-33.		6
45	Limited Therapeutic Time Windows of Mild-to-Moderate Hypothermia in a Focal Ischemia Model in Rat. Stroke Research and Treatment, 2011, 2011, 1-7.	0.5	20
46	The Protective Effects of Ischemic Postconditioning against Stroke: From Rapid to Delayed and Remote Postconditioning. The Open Drug Discovery Journal, 2011, 5, 138-147.	0.8	16
47	The Akt Pathway Is Involved in Rapid Ischemic Tolerance in Focal Ischemia in Rats. Translational Stroke Research, 2010, 1, 202-209.	2.3	35
48	Activating Î'PKC antagonizes the protective effect of ERK1/2 inhibition against stroke in rats. Brain Research, 2009, 1251, 256-261.	1.1	10
49	Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Research, 2009, 1288, 88-94.	1.1	156
50	Blocking Glucocorticoid and Enhancing Estrogenic Genomic Signaling Protects against Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 130-136.	2.4	16
51	Ischemic Postconditioning as a Novel Avenue to Protect against Brain Injury after Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 873-885.	2.4	176
52	The Protective Effect of Early Hypothermia on PTEN Phosphorylation Correlates with Free Radical Inhibition in Rat Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1589-1600.	2.4	53
53	Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. Journal of Neuroscience Research, 2008, 86, 1659-1669.	1.3	209
54	Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. Journal of Neuroscience Research, 2008, 86, 2505-2511.	1.3	92

#	Article	IF	CITATIONS
55	The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. Journal of Neurochemistry, 2008, 105, 943-955.	2.1	156
56	Hypothermia blocks β-catenin degradation after focal ischemia in rats. Brain Research, 2008, 1198, 182-187.	1.1	21
57	Delayed Postconditioning Protects against Focal Ischemic Brain Injury in Rats. PLoS ONE, 2008, 3, e3851.	1.1	105
58	Inhibiting caspase-3 activity blocks beta-catenin degradation after focal ischemia in rat. NeuroReport, 2008, 19, 821-824.	0.6	9
59	ÎμPKC May Contribute to the Protective Effect of Hypothermia in a Rat Focal Cerebral Ischemia Model. Stroke, 2007, 38, 375-380.	1.0	52
60	Barker-coded ultrasound color flow imaging: theoretical and practical design considerations. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 319-331.	1.7	40
61	Conditions of protection by hypothermia and effects on apoptotic pathways in a rat model of permanent middle cerebral artery occlusion. Journal of Neurosurgery, 2007, 107, 636-641.	0.9	52
62	Suppression of ÎPKC Activation after Focal Cerebral Ischemia Contributes to the Protective Effect of Hypothermia. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1463-1475.	2.4	52
63	General versus Specific Actions of Mild-Moderate Hypothermia in Attenuating Cerebral Ischemic Damage. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1879-1894.	2.4	151
64	The Protective Effect of Ischemic Postconditioning Against Ischemic Injury: From the Heart to the Brain. Journal of NeuroImmune Pharmacology, 2007, 2, 313-318.	2.1	68
65	Interrupting Reperfusion as a Stroke Therapy: Ischemic Postconditioning Reduces Infarct Size after Focal Ischemia in Rats. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1114-1121.	2.4	301
66	Phosphoinositide-3-Kinase/Akt Survival Signal Pathways Are Implicated in Neuronal Survival After Stroke. Molecular Neurobiology, 2006, 34, 249-270.	1.9	248
67	Biphasic Cytochrome c Release After Transient Global Ischemia and its Inhibition by Hypothermia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1119-1129.	2.4	75
68	Akt Contributes to Neuroprotection by Hypothermia against Cerebral Ischemia in Rats. Journal of Neuroscience, 2005, 25, 9794-9806.	1.7	257
69	Conditions of protection by hypothermia and effects on apoptotic pathways in a model of permanent middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S474-S474.	2.4	3
70	Mild Postischemic Hypothermia Prolongs the Time Window for Gene Therapy by Inhibiting Cytochrome c Release. Stroke, 2004, 35, 572-577.	1.0	57
71	Bcl-2 Transfection via Herpes Simplex Virus Blocks Apoptosis-Inducing Factor Translocation after Focal Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 681-692.	2.4	92
72	Glycogen synthase kinase 3β inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Experimental Neurology, 2004, 188, 378-386.	2.0	93

#	Article	IF	CITATIONS
73	Bclâ€⊋ overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome <i>c</i> translocation and caspaseâ€3 activity. Journal of Neurochemistry, 2003, 85, 1026-1036.	2.1	290
74	Gene Therapy and Hypothermia for Stroke Treatment. Annals of the New York Academy of Sciences, 2003, 993, 54-68.	1.8	37
75	Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: Influence of Bcl-2. Annals of Neurology, 2002, 52, 160-167.	2.8	123
76	Quantitative evaluation of extracellular glutamate concentration in postischemic glutamate re-uptake, dependent on brain temperature, in the rat following severe global brain ischemia. Brain Research, 2000, 864, 60-68.	1.1	30
77	Neither L-NAME nor L-arginine changes extracellular glutamate elevation and anoxic depolarization during global ischemia and reperfusion in rat. NeuroReport, 1999, 10, 313-318.	0.6	17
78	Effects of brain temperature on CBF thresholds for extracellular glutamate release and reuptake in the striatum in a rat model of graded global ischemia. NeuroReport, 1998, 9, 3183-3188.	0.6	31
79	Minimal effect of brain temperature changes on glutamate release in rat following severe global brain ischemia. NeuroReport, 1998, 9, 3863-3867.	0.6	19
80	Real-time monitoring of the effects of normothermia and hypothermia on extracellular glutamate re-uptake in the rat following global brain ischemia. NeuroReport, 1997, 8, 2389-2392.	0.6	34