Jana Å afrÃ;nkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9181914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties of Magnetic Field Fluctuations in Long-Lasting Radial IMF Events from Wind Observation. Atmosphere, 2022, 13, 173.	2.3	2
2	Eigenmodes of the Boundary of a Magnetic Barrier Flowed Around by Plasma: the Boundary Membrane Model, Linear and Nonlinear Resonances, and Couplings with Internal Modes. Journal of Experimental and Theoretical Physics, 2021, 132, 285-293.	0.9	1
3	Detection of Dust Particles Using Faraday Cup Instruments. Astrophysical Journal, 2021, 909, 132.	4.5	2
4	Turbulence Upstream and Downstream of Interplanetary Shocks. Frontiers in Physics, 2021, 8, .	2.1	17
5	Anisotropy of Magnetic Field and Velocity Fluctuations in the Solar Wind. Astrophysical Journal, 2021, 913, 80.	4.5	4
6	Flattening of the Density Spectrum in Compressible Hall-MHD Simulations. Atmosphere, 2021, 12, 1162.	2.3	2
7	Spectra of Temperature Fluctuations in the Solar Wind. Atmosphere, 2021, 12, 1277.	2.3	3
8	Ion Cloud Expansion after Hyper-velocity Dust Impacts Detected by the Magnetospheric Multiscale Mission Electric Probes in the Dipole Configuration. Astrophysical Journal, 2021, 921, 127.	4.5	1
9	A Novel Method for Estimating the Intrinsic Magnetic Field Spectrum of Kinetic-Range Turbulence. Atmosphere, 2021, 12, 1547.	2.3	7
10	Magnetic Field Gradient Across the Flank Magnetopause. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	2
11	Proton Beam Abundance Variations and Their Relation to Alpha Particle Properties. Astrophysical Journal, 2021, 923, 170.	4.5	5
12	(Non)radial Solar Wind Propagation through the Heliosphere. Astrophysical Journal Letters, 2020, 897, L39.	8.3	9
13	Martian Bow Shock and Magnetic Pileup Boundary Models Based on an Automated Region Identification. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028509.	2.4	7
14	Long- and Short-Term Evolutions of Magnetic Field Fluctuations in High-Speed Streams. Solar Physics, 2020, 295, 1.	2.5	6
15	Comparison of Observed and Modeled Magnetic Fields in the Earth's Magnetosheath. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027705.	2.4	3
16	Solar Wind Deflection in the Foreshock: Modelâ€Data Comparison. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA026970.	2.4	1
17	What is the Solar Wind Frame of Reference?. Astrophysical Journal, 2020, 889, 163.	4.5	21
18	Solar Wind Proton Deceleration in Front of the Terrestrial Bow Shock. Journal of Geophysical Research: Space Physics, 2019, 124, 6553-6565.	2.4	7

#	Article	IF	CITATIONS
19	Characteristics of Solar Wind Fluctuations at and below Ion Scales. Astrophysical Journal, 2019, 879, 82.	4.5	8
20	Evolution of Relative Drifts in the Expanding Solar Wind: Helios Observations. Solar Physics, 2019, 294, 1.	2.5	28
21	Fine Structure of Interplanetary Shock Front—Results from BMSW Experiment with High Time Resolution. Journal of Geophysical Research: Space Physics, 2019, 124, 8191-8207.	2.4	2
22	Collisionless Plasma Processes at Magnetospheric Boundaries: Role of Strong Nonlinear Wave Interactions. JETP Letters, 2019, 110, 336-341.	1.4	3
23	On the Influence of the Earth's Magnetic Dipole Eccentricity and Magnetospheric Ring Current on the Magnetopause Location. Journal of Geophysical Research: Space Physics, 2019, 124, 905-914.	2.4	2
24	Longâ€Term Variations in Solar Wind Parameters, Magnetopause Location, and Geomagnetic Activity Over the Last Five Solar Cycles. Journal of Geophysical Research: Space Physics, 2019, 124, 4049-4063.	2.4	15
25	Evolution of the α-proton Differential Motion across Stream Interaction Regions. Astrophysical Journal, 2019, 873, 24.	4.5	14
26	Statistical Survey of the Terrestrial Bow Shock Observed by the Cluster Spacecraft. Journal of Geophysical Research: Space Physics, 2019, 124, 1539-1547.	2.4	13
27	One‥ear Analysis of Dust Impact‣ike Events Onto the MMS Spacecraft. Journal of Geophysical Research: Space Physics, 2019, 124, 8179-8190.	2.4	17
28	Scale-dependent Polarization of Solar Wind Velocity Fluctuations at the Inertial and Kinetic Scales. Astrophysical Journal, 2019, 870, 40.	4.5	18
29	Auto-ionization of LiF grains. AIP Conference Proceedings, 2018, , .	0.4	0
30	MF Microspheres: Helping or Puzzling Tool?. IEEE Transactions on Plasma Science, 2018, 46, 709-717.	1.3	4
31	Do we detect interplanetary dust with Faraday cups?. Planetary and Space Science, 2018, 156, 17-22.	1.7	1
32	Laboratory modeling of dust impact detection by the Cassini spacecraft. Planetary and Space Science, 2018, 156, 85-91.	1.7	24
33	Overview of APEX Project Results. Frontiers in Astronomy and Space Sciences, 2018, 5, .	2.8	13
34	Interaction of the Interplanetary Shock and IMF Directional Discontinuity in the Solar Wind. Journal of Geophysical Research: Space Physics, 2018, 123, 3822-3835.	2.4	1
35	Magnetosheath Propagation Time of Solar Wind Directional Discontinuities. Journal of Geophysical Research: Space Physics, 2018, 123, 3727-3741.	2.4	7
36	Formation of the Dayside Magnetopause and Its Boundary Layers Under the Radial IMF. Journal of Geophysical Research: Space Physics, 2018, 123, 3533-3547.	2.4	8

#	Article	IF	CITATIONS
37	Secondary electron emission and its role in the space environment. AIP Conference Proceedings, 2018, , .	0.4	1
38	Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations. Astrophysical Journal, 2018, 859, 27.	4.5	29
39	A method to predict magnetopause expansion in radial IMF events by MHD simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 3110-3126.	2.4	11
40	Evolution of the magnetic field structure outside the magnetopause under radial IMF conditions. Journal of Geophysical Research: Space Physics, 2017, 122, 4051-4063.	2.4	16
41	Multifractal analysis of high resolution solar wind proton density measurements. Advances in Space Research, 2017, 59, 1642-1651.	2.6	21
42	Decay of Solar Wind Turbulence behind Interplanetary Shocks. Astrophysical Journal, 2017, 844, 51.	4.5	15
43	Variety of shapes of solar wind ion flux spectra: Spektr-R measurements. Journal of Plasma Physics, 2017, 83, .	2.1	12
44	Evolution of Proton and Alpha Particle Velocities through the Solar Cycle. Astrophysical Journal, 2017, 850, 164.	4.5	16
45	Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field. Planetary and Space Science, 2017, 148, 28-34.	1.7	19
46	PRESSURE PULSES AT VOYAGER 2: DRIVERS OF INTERSTELLAR TRANSIENTS?. Astrophysical Journal, 2017, 834, 190.	4.5	35
47	Fine structure of the interplanetary shock front according to measurements of the ion flux of the solar wind with high time resolution. Cosmic Research, 2017, 55, 30-45.	0.6	10
48	Intermittency of the solar wind density near the interplanetary shock. Geomagnetism and Aeronomy, 2017, 57, 645-654.	0.8	2
49	Spiky Structures around Reconnection Exhausts in the Solar Wind. Astrophysical Journal, 2017, 851, 86.	4.5	4
50	Sputtering of Spherical SiO2Samples. IEEE Transactions on Plasma Science, 2016, 44, 1036-1044.	1.3	2
51	POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND. Astrophysical Journal, 2016, 825, 121.	4.5	46
52	Do we know the actual magnetopause position for typical solar wind conditions?. Journal of Geophysical Research: Space Physics, 2016, 121, 6493-6508.	2.4	27
53	EMC aspects of turbulence heating observer (THOR) spacecraft. , 2016, , .		3
54	LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH'S MAGNETOSPHERE CROSSING. Astrophysical Journal, 2016, 825, 133.	4.5	19

#	Article	IF	CITATIONS
55	Global expansion of the dayside magnetopause for longâ€duration radial IMF events: Statistical study on GOES observations. Journal of Geophysical Research: Space Physics, 2016, 121, 6480-6492.	2.4	20
56	Kelvin-Helmholtz wave at the subsolar magnetopause boundary layer under radial IMF. Journal of Geophysical Research: Space Physics, 2016, 121, 9863-9879.	2.4	11
57	Solar cycle variations of magnetopause locations. Advances in Space Research, 2016, 58, 240-248.	2.6	19
58	Comparison of properties of small-scale ion flux fluctuations in the flank magnetosheath and in the solar wind. Advances in Space Research, 2016, 58, 166-174.	2.6	16
59	DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS. Astrophysical Journal, 2016, 819, 41.	4.5	24
60	Secondary Emission From Clusters Composed of Spherical Grains. IEEE Transactions on Plasma Science, 2016, 44, 505-511.	1.3	6
61	Investigations of Photoemission From Lunar Dust Simulant. IEEE Transactions on Plasma Science, 2016, 44, 512-518.	1.3	4
62	Analysis of temperature versus density plots and their relation to the LLBL formation under southward and northward IMF orientations. Journal of Geophysical Research: Space Physics, 2015, 120, 3475-3488.	2.4	15
63	Transient events at the magnetopause and bipolar magnetic signatures. Planetary and Space Science, 2015, 115, 19-26.	1.7	1
64	SOLAR WIND DENSITY SPECTRA AROUND THE ION SPECTRAL BREAK. Astrophysical Journal, 2015, 803, 107.	4.5	51
65	Modification of small- and middle-scale solar wind structures by the bow shock and magnetosheath: Correlation analysis. Planetary and Space Science, 2015, 115, 12-18.	1.7	6
66	Turbulent spectra of the solar wind near interplanetary shocks. , 2015, , .		0
67	PLASMA-F experiment: Three years of on-orbit operation. Solar System Research, 2015, 49, 580-603.	0.7	1
68	Rapid variations of the value and direction of the solar wind ion flux. Cosmic Research, 2015, 53, 59-69.	0.6	7
69	Dynamic properties of small-scale solar wind plasma fluctuations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140146.	3.4	37
70	Interplanetary shock–bow shock interaction: Comparison of a global MHD model and observation. Planetary and Space Science, 2015, 115, 4-11.	1.7	8
71	A reexamination of longâ€duration radial IMF events. Journal of Geophysical Research: Space Physics, 2014, 119, 7005-7011.	2.4	29
72	INTERMITTENCY OF SOLAR WIND DENSITY FLUCTUATIONS FROM ION TO ELECTRON SCALES. Astrophysical Journal Letters, 2014, 789, L8.	8.3	66

#	Article	IF	CITATIONS
73	The influence of secondary electron emission on the floating potential of tokamak-born dust. Plasma Physics and Controlled Fusion, 2014, 56, 025001.	2.1	13
74	STATISTICAL STUDY OF RECONNECTION EXHAUSTS IN THE SOLAR WIND. Astrophysical Journal, 2014, 796, 21.	4.5	15
75	Observation of fast variations of the helium-ion abundance in the solar wind. Cosmic Research, 2014, 52, 25-36.	0.6	12
76	The far magnetotail response to an interplanetary shock arrival. Planetary and Space Science, 2014, 103, 228-237.	1.7	9
77	On nonlinear cascades and resonances in the outer magnetosphere. JETP Letters, 2014, 99, 16-21.	1.4	18
78	Possible observational evidence of contact discontinuities. Geophysical Research Letters, 2014, 41, 8228-8234.	4.0	7
79	Upstream and downstream wave packets associated with lowâ€Mach number interplanetary shocks. Geophysical Research Letters, 2014, 41, 8100-8106.	4.0	16
80	Secondary electron emission from Martian soil simulant. Journal of Geophysical Research E: Planets, 2014, 119, 199-209.	3.6	1
81	Automated interplanetary shock detection and its application to Wind observations. Journal of Geophysical Research: Space Physics, 2013, 118, 4793-4803.	2.4	15
82	lon scales of quasiâ€perpendicular lowâ€Machâ€number interplanetary shocks. Geophysical Research Letters, 2013, 40, 4133-4137.	4.0	21
83	Why does the total pressure on the subsolar magnetopause differ from the solar wind dynamic pressure?. Cosmic Research, 2013, 51, 37-45.	0.6	4
84	Numerical Calculation of an Equilibrium Dust Grain Potential in Lunar Environment. IEEE Transactions on Plasma Science, 2013, 41, 740-744.	1.3	5
85	Fast Solar Wind Monitor (BMSW): Description and First Results. Space Science Reviews, 2013, 175, 165-182.	8.1	68
86	Fast measurements of parameters of the Solar Wind using the BMSW instrument. Cosmic Research, 2013, 51, 78-89.	0.6	45
87	A new threeâ€dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations. Journal of Geophysical Research: Space Physics, 2013, 118, 2173-2184.	2.4	43
88	Solar wind modification upstream of the bow shock. AIP Conference Proceedings, 2013, , .	0.4	2
89	Fast solar wind monitoring available: BMSW in operation. , 2013, , .		2

90 Multi-spacecraft observations of magnetic reconnection in the solar wind. , 2013, , .

0

#	Article	IF	CITATIONS
91	Ion Kinetic Scale in the Solar Wind Observed. Physical Review Letters, 2013, 110, 025004.	7.8	65
92	Interball Tail Probe Measurements in Outer Cusp and Boundary Layers. Geophysical Monograph Series, 2013, , 25-44.	0.1	36
93	SHORT-SCALE VARIATIONS OF THE SOLAR WIND HELIUM ABUNDANCE. Astrophysical Journal, 2013, 778, 25.	4.5	25
94	Linear trap with three orthogonal quadrupole fields for dust charging experiments. Review of Scientific Instruments, 2012, 83, 115109.	1.3	4
95	Super fast plasma streams as drivers of transient and anomalous magnetospheric dynamics. Annales Geophysicae, 2012, 30, 1-7.	1.6	52
96	SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST. Astrophysical Journal, 2012, 761, 108.	4.5	10
97	Multipoint study of magnetosheath magnetic field fluctuations and their relation to the foreshock. Journal of Geophysical Research, 2012, 117, .	3.3	18
98	A new approach to magnetopause and bow shock modeling based on automated region identification. Journal of Geophysical Research, 2012, 117, .	3.3	61
99	Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field?. Journal of Geophysical Research, 2012, 117, .	3.3	39
100	Asymmetric magnetosphere deformation driven by hot flow anomaly(ies). Geophysical Research Letters, 2012, 39, .	4.0	17
101	LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: DEPENDENCE OF THE SURFACE POTENTIAL ON THE GRAIN SIZE. Astrophysical Journal, 2011, 738, 14.	4.5	22
102	Anomalous interaction of a plasma flow with the boundary layers of a geomagnetic trap. JETP Letters, 2011, 93, 754-762.	1.4	16
103	Dusty Plasma Effects in Near Earth Space and Interplanetary Medium. Space Science Reviews, 2011, 161, 1-47.	8.1	52
104	MHD analysis of propagation of an interplanetary shock across magnetospheric boundaries. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 20-29.	1.6	21
105	Modeling the secondary emission yield of salty ice dust grains. Icarus, 2011, 212, 367-372.	2.5	5
106	ROY—A multiscale magnetospheric mission. Planetary and Space Science, 2011, 59, 606-617.	1.7	7
107	Deformation of ICMEs/MCs along their path. Planetary and Space Science, 2011, 59, 840-847.	1.7	3
108	Dayside magnetopause transients correlated with changes of the magnetosheath magnetic field orientation. Annales Geophysicae, 2011, 29, 687-699.	1.6	14

#	Article	IF	CITATIONS
109	Self-discharging Of Positively Charged Dust Grains. AIP Conference Proceedings, 2011, , .	0.4	0
110	Electrons Emitted From Small Dust Grains: Comparison Of Sphere And Cube. AIP Conference Proceedings, 2011, , .	0.4	1
111	The Shape And Charge Of Lunar Dust Simulant (LHT) Under Electron Bombardment. AIP Conference Proceedings, 2011, , .	0.4	Ο
112	Composition And Electrical Properties Of Dust From Tokamak Compass. AIP Conference Proceedings, 2011, , .	0.4	0
113	CORRELATIONS OF PLASMA DENSITY AND MAGNETIC FIELD STRENGTH IN THE HELIOSHEATH. Astrophysical Journal Letters, 2010, 722, L228-L232.	8.3	5
114	Relation of Charging History to Field Ion Emission From Gold and Carbon Dust. IEEE Transactions on Plasma Science, 2010, 38, 798-802.	1.3	3
115	Dust as a Gas Carrier. IEEE Transactions on Plasma Science, 2010, 38, 886-891.	1.3	5
116	Propagation of Interplanetary Shocks Across the Bow Shock. AIP Conference Proceedings, 2010, , .	0.4	1
117	Spatial Profile of the LLBL: Multispacecraft Themis observations. AIP Conference Proceedings, 2010, , .	0.4	3
118	Electrons scattered inside small dust grains of various materials. Physical Review B, 2010, 81, .	3.2	15
119	IMF cone angle control of the magnetopause location: Statistical study. Geophysical Research Letters, 2010, 37, .	4.0	56
120	Thin magnetosheath as a consequence of the magnetopause deformation: THEMIS observations. Journal of Geophysical Research, 2010, 115, .	3.3	25
121	Magnetopause expansions for quasiâ€radial interplanetary magnetic field: THEMIS and Geotail observations. Journal of Geophysical Research, 2010, 115, .	3.3	71
122	Dust Charging in Spaceâ€related Laboratory Experiments: A Review Focused on Secondary Emission. Contributions To Plasma Physics, 2009, 49, 169-186.	1.1	15
123	Secondary electron emission from highly charged carbon grains. European Physical Journal D, 2009, 54, 299-304.	1.3	3
124	Influence of the foreshock of the Earth's bow shock on the interplanetary shock propagation during their mutual interaction. Earth, Planets and Space, 2009, 61, 607-610.	2.5	6
125	Correlation properties of magnetosheath magnetic field fluctuations. Journal of Geophysical Research, 2009, 114, .	3.3	17
126	Reliability of prediction of the magnetosheath <i>B</i> _{<i>Z</i>} component from interplanetary magnetic field observations. Journal of Geophysical Research, 2009, 114, .	3.3	35

#	Article	IF	CITATIONS
127	Field emission characteristics of gold dust grains. Advances in Space Research, 2008, 42, 129-135.	2.6	5
128	Small-scale deformation of the bow shock. Advances in Space Research, 2008, 41, 1519-1527.	2.6	2
129	IMF control of the high-altitude cusp dynamics. Advances in Space Research, 2008, 41, 92-102.	2.6	5
130	A new approach to solar wind monitoring. Advances in Space Research, 2008, 41, 153-159.	2.6	13
131	An application of the dust grain charging model to determination of secondary electron spectra. European Physical Journal D, 2008, 48, 375-381.	1.3	3
132	High energy jets in the Earth's magnetosheath: Implications for plasma dynamics and anomalous transport. JETP Letters, 2008, 87, 593-599.	1.4	61
133	Influence of the tilt angle on the bow shock shape and location. Journal of Geophysical Research, 2008, 113, .	3.3	12
134	Response of magnetospheric boundaries to the interplanetary shock: Themis contribution. Geophysical Research Letters, 2008, 35, .	4.0	28
135	Interaction between single dust grains and ions or electrons: laboratory measurements and their consequences for the dust dynamics. Faraday Discussions, 2008, 137, 139-155.	3.2	29
136	Influence of the Electric Field on Secondary Electron Emission Yield. AIP Conference Proceedings, 2008, , .	0.4	0
137	Peculiarities of the Field Electron Emission from Dust Grains. AIP Conference Proceedings, 2008, , .	0.4	0
138	Changes of Dust Grain Properties Under Particle Bombardment. AIP Conference Proceedings, 2008, , .	0.4	1
139	A general Cluster data and global MHD simulation comparison. Annales Geophysicae, 2008, 26, 3411-3428.	1.6	3
140	Observations of vortex-like structure in the cusp-magnetosheath region during northward IMF orientation. Annales Geophysicae, 2008, 26, 3375-3387.	1.6	2
141	Correlation length of magnetosheath fluctuations: Cluster statistics. Annales Geophysicae, 2008, 26, 2503-2513.	1.6	17
142	Influence of Charging Conditions on Field Ion Emission From Dust Grains. IEEE Transactions on Plasma Science, 2007, 35, 292-296.	1.3	12
143	Secondary Emission From Glass Grains: Comparison of the Model and Experiment. IEEE Transactions on Plasma Science, 2007, 35, 286-291.	1.3	15
144	The Sputtering of Dust Grains: Aspects of Experimental Observations. IEEE Transactions on Plasma Science, 2007, 35, 297-302.	1.3	9

#	Article	IF	CITATIONS
145	Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation. Journal of Geophysical Research, 2007, 112, .	3.3	22
146	Modification of interplanetary shocks near the bow shock and through the magnetosheath. Journal of Geophysical Research, 2007, 112, .	3.3	33
147	Interaction of interplanetary shocks with the bow shock. Planetary and Space Science, 2007, 55, 2324-2329.	1.7	11
148	Interball contribution to the high-altitude cusp observations. Planetary and Space Science, 2007, 55, 2286-2294.	1.7	3
149	Numerical MHD modeling of propagation of interplanetary shock through the magnetosheath. Journal of Geophysical Research, 2006, 111, .	3.3	62
150	Interplanetary shock in the magnetosheath: Comparison of experimental data with MHD modeling. Geophysical Research Letters, 2006, 33, .	4.0	33
151	Model of secondary emission and its application on the charging of gold dust grains. Physical Review B, 2006, 74, .	3.2	19
152	Propagation of interplanetary shocks through the solar wind and magnetosheath. Advances in Space Research, 2006, 38, 552-558.	2.6	21
153	Impact of surface properties on the dust grain charging. Advances in Space Research, 2006, 38, 2558-2563.	2.6	4
154	Ion beam effects on dust grains: 2—Influence of charging history. Vacuum, 2006, 80, 542-547.	3.5	8
155	Secondary emission from dust grains with a surface layer: comparison between experimental and model results. Advances in Space Research, 2006, 38, 2551-2557.	2.6	6
156	Study of energetic particle anisotropy in weak and strong foreshocks. Advances in Space Research, 2006, 37, 1413-1420.	2.6	0
157	MHD-modelling of the magnetosheath ion plasma flow and magnetic field and their comparison with experiments. Advances in Space Research, 2006, 37, 507-514.	2.6	10
158	A study of particle flows in hot flow anomalies. Planetary and Space Science, 2005, 53, 41-52.	1.7	14
159	INTERBALL-1 observations of plasma and energetic particle fluxes upstream of the Earth's bow shock. Planetary and Space Science, 2005, 53, 65-78.	1.7	3
160	Improved bow shock model with dependence on the IMF strength. Planetary and Space Science, 2005, 53, 85-93.	1.7	64
161	Relationship between high-energy particles and ion flux in the magnetosheath. Planetary and Space Science, 2005, 53, 103-115.	1.7	9
162	Variations of the magnetosheath ion flux and geomagnetic activity. Advances in Space Research, 2005, 36, 2417-2422.	2.6	7

#	Article	IF	CITATIONS
163	Bow shock observations by Prognoz–Prognoz 11 data: analysis and model comparison. Advances in Space Research, 2005, 36, 1958-1963.	2.6	8
164	Structure of the high-altitude cusp formed by the horizontal IMF. Advances in Space Research, 2005, 36, 1928-1933.	2.6	2
165	Plasma flow variations and energetic protons upstream of the earth's bow shock: A statistical study. Advances in Space Research, 2005, 36, 2345-2350.	2.6	3
166	The shape and location of the high-latitude magnetopause. Advances in Space Research, 2005, 36, 1934-1939.	2.6	26
167	Magion-4 High-Altitude Cusp Study. Surveys in Geophysics, 2005, 26, 57-69.	4.6	2
168	Low-Frequency Plasma Waves in the Outer Polar CUSP: A Review of Observations from Prognoz 8, Interball 1, Magion 4, and Cluster. Surveys in Geophysics, 2005, 26, 177-191.	4.6	11
169	The influence of ion bombardment on emission properties of small dust grains. European Physical Journal D, 2005, 55, 1283-1291.	0.4	2
170	Formation of the flank LLBL: A case study. European Physical Journal D, 2005, 55, 1293-1301.	0.4	0
171	Field Electron Emission from Gold Dust Grains. AlP Conference Proceedings, 2005, , .	0.4	1
172	The Study of Field Ion Emission from Gold Dust Grains. AIP Conference Proceedings, 2005, , .	0.4	2
173	Energy Distributions of Secondary Electrons Under Different Conditions. AIP Conference Proceedings, 2005, , .	0.4	Ο
174	Electric Field Influence on Secondary Emission. AIP Conference Proceedings, 2005, , .	0.4	2
175	Deformation of interplanetary shock fronts in the magnetosheath. Geophysical Research Letters, 2005, 32, .	4.0	35
176	Magion-4 High-Altitude Cusp Study. , 2005, , 57-69.		0
177	Radial dependence of foreshock cavities: a case study. Annales Geophysicae, 2004, 22, 4143-4151.	1.6	14
178	Ion beam effects on dust grains. Vacuum, 2004, 76, 447-455.	3.5	14
179	A Model of Secondary Emission From Dust Grains and Its Comparison With an Experiment. IEEE Transactions on Plasma Science, 2004, 32, 617-622.	1.3	21
180	Emissions From Nonconducting Negatively Charged Dust Grains. IEEE Transactions on Plasma Science, 2004, 32, 607-612.	1.3	6

#	Article	IF	CITATIONS
181	Mass-Loss Rate for MF Resin Microspheres. IEEE Transactions on Plasma Science, 2004, 32, 704-708.	1.3	52
182	Magnetosheath-cusp interface. Annales Geophysicae, 2004, 22, 183-212.	1.6	35
183	Spatial and temporal variations of the high-altitude cusp precipitation. Annales Geophysicae, 2004, 22, 2441-2450.	1.6	7
184	The Role of Wave–Particle Interactions in the Dynamics of Plasma in the Polar Cusp. Cosmic Research, 2003, 41, 332-339.	0.6	2
185	Problems of Dust Grains Charging to Negative Potentials. European Physical Journal D, 2003, 53, 151-162.	0.4	4
186	Configuration of the outer cusp after an IMF rotation. Advances in Space Research, 2003, 31, 1395-1400.	2.6	7
187	The bow shock velocity from two-point measurements in frame of the interball project. Advances in Space Research, 2003, 31, 1377-1382.	2.6	11
188	The dawn-dusk asymmetry of the magnetosheath: INTERBALL-1 observations. Advances in Space Research, 2003, 31, 1333-1340.	2.6	24
189	High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: Radial profile and some features. Advances in Space Research, 2003, 31, 1389-1394.	2.6	41
190	Earth's bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison. Journal of Geophysical Research, 2003, 108, .	3.3	52
191	Structure of the outer cusp and sources of the cusp precipitation during intervals of a horizontal IMF. Journal of Geophysical Research, 2003, 108, .	3.3	27
192	The structure of magnetopause layers at low latitudes: Interball contributions. Geophysical Monograph Series, 2003, , 71-82.	0.1	13
193	Spacecraft potential during an active experiment: a comparison of experimental results with a simple model. Annales Geophysicae, 2003, 21, 915-922.	1.6	1
194	Charging Properties of Dust Grain Clusters. AIP Conference Proceedings, 2002, , .	0.4	3
195	Secondary Emission From Small Spherical Grains. AIP Conference Proceedings, 2002, , .	0.4	0
196	The magnetopause shape and location: a comparison of the Interball and Geotail observations with models. Annales Geophysicae, 2002, 20, 301-309.	1.6	51
197	Cusp-like plasma in high altitudes: a statistical study of the width and location of the cusp from Magion-4. Annales Geophysicae, 2002, 20, 311-320.	1.6	42
198	On the properties of turbulent boundary layer over polar cusps. Nonlinear Processes in Geophysics, 2002, 9, 443-451.	1.3	31

#	Article	IF	CITATIONS
199	Density profile in the magnetosheath adjacent to the magnetopause. Advances in Space Research, 2002, 30, 1693-1703.	2.6	6
200	Small scale solar wind ion flux and IMF quasi-harmonical structures in the earth's foreshock: INTERBALL-1 and MAGION-4 observations. Advances in Space Research, 2002, 30, 2725-2729.	2.6	1
201	Spatial distribution of the magnetosheath ion flux. Advances in Space Research, 2002, 30, 2751-2756.	2.6	18
202	Plasma flow across the cusp-magnetosheath boundary under northward IMF. Advances in Space Research, 2002, 30, 2787-2792.	2.6	6
203	Low-frequency variations of the ion flux in the magnetosheath. Planetary and Space Science, 2002, 50, 567-575.	1.7	38
204	Multispacecraft measurements of plasma and magnetic field variations in the magnetosheath: Comparison with Spreiter models and motion of the structures. Planetary and Space Science, 2002, 50, 601-612.	1.7	41
205	The structure of hot flow anomalies in the magnetosheath. Advances in Space Research, 2002, 30, 2737-2744.	2.6	13
206	Multi-spacecraft tracing of turbulent boundary layer. Advances in Space Research, 2002, 30, 2821-2830.	2.6	34
207	Title is missing!. Cosmic Research, 2002, 40, 335-346.	0.6	2
208	Actively produced high-energy electron bursts within the magnetosphere: the APEX project. Annales Geophysicae, 2002, 20, 1529-1538.	1.6	10
209	Transients at the dusk side magnetospheric boundary: Surface waves or isolated plasma blobs?. Journal of Geophysical Research, 2001, 106, 25503-25516.	3.3	12
210	Observation of the magnetospheric "sash―and its implications relative to solar-wind/magnetospheric coupling: A multisatellite event analysis. Journal of Geophysical Research, 2001, 106, 6097-6122.	3.3	24
211	Ion field emission from micrometer-sized spherical glass grains. IEEE Transactions on Plasma Science, 2001, 29, 292-297.	1.3	15
212	Analysis of the 3-D shape of the terrestrial bow shock by interball/magion 4 observations. Advances in Space Research, 2001, 28, 857-862.	2.6	47
213	Statistical Study of Ion Flux Fluctuations in the Magnetosheath. European Physical Journal D, 2001, 51, 853-862.	0.4	16
214	Title is missing!. Cosmic Research, 2001, 39, 432-438.	0.6	2
215	Turbulent boundary layer at the border of geomagnetic trap. JETP Letters, 2001, 74, 547-551.	1.4	30
216	Observations of the radial magnetosheath profile and a comparison with gasdynamic model predictions. Geophysical Research Letters, 2000, 27, 2801-2804.	4.0	45

#	Article	IF	CITATIONS
217	High-altitude cusp: INTERBALL observation. Advances in Space Research, 2000, 25, 1425-1434.	2.6	27
218	The flank magnetopause: INTERBALL observations. Advances in Space Research, 2000, 25, 1503-1510.	2.6	4
219	Medium energy proton fluxes outside the magnetopause: INTERBALL-1 data. Advances in Space Research, 2000, 25, 1517-1522.	2.6	7
220	Magnetosheath study: INTERBALL observation. Advances in Space Research, 2000, 25, 1511-1516.	2.6	13
221	Electron fluxes in the magnetotail: Statistical study. Advances in Space Research, 2000, 25, 1623-1628.	2.6	3
222	Statistic study of magnetosphere response to magnetic clouds: INTERBALL multi-satellite observations. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2000, 25, 177-180.	0.2	4
223	Magnetopause motion driven by interplanetary magnetic field variations. Journal of Geophysical Research, 2000, 105, 25155-25169.	3.3	52
224	The tilt angle control of the outer cusp position. Geophysical Research Letters, 2000, 27, 77-80.	4.0	22
225	Magnetosheath response to the interplanetary magnetic field tangential discontinuity. Journal of Geophysical Research, 2000, 105, 25113-25121.	3.3	28
226	Two-point measurements of the magnetopause: Interball observations. Journal of Geophysical Research, 2000, 105, 237-244.	3.3	22
227	Artificial ion beam effects on spacecraft potential. Advances in Space Research, 1999, 24, 1027-1032.	2.6	1
228	Comprehensive study of the magnetospheric response to a hot flow anomaly. Journal of Geophysical Research, 1999, 104, 4577-4593.	3.3	169
229	Bow Shock Position: Observations and Models. , 1999, , 187-201.		7
230	Plasma and Magnetic Field Variations in the Magnetosheath: Interball-1 and ISTP Spacecraft Observations. , 1999, , 277-294.		4
231	Solar wind modification in the foreshock. , 1999, , .		2
232	Interball and Geotail Observations of Flux Transfer Events. , 1999, , 103-111.		0
233	The High-Altitude Cusp: Interball Observations. , 1999, , 125-143.		1
234	Evolution of the auroral oval during a weak substorm. European Physical Journal D, 1998, 48, 103-112.	0.4	0

#	Article	IF	CITATIONS
235	Observations of the beam-plasma interaction during the APEX artificial electron beam emission. Advances in Space Research, 1998, 21, 723-728.	2.6	1
236	Surface potential of small particles charged by the medium-energy electron beam. Vacuum, 1998, 50, 139-142.	3.5	39
237	Two point observation of high-latitude reconnection. Geophysical Research Letters, 1998, 25, 4301-4304.	4.0	36
238	The January 10-11, 1997 magnetic cloud: Multipoint measurements. Geophysical Research Letters, 1998, 25, 2549-2552.	4.0	11
239	Transient flux enhancements in the magnetosheath. Geophysical Research Letters, 1998, 25, 1273-1276.	4.0	94
240	Artificial electron and ion beam effects: Active Plasma Experiment. Journal of Geophysical Research, 1997, 102, 2201-2211.	3.3	15
241	INTERBALL magnetotail boundary case studies. Advances in Space Research, 1997, 20, 999-1015.	2.6	10
242	Propagation of electron bursts in the low-latitude magnetosphere. European Physical Journal D, 1997, 47, 337-350.	0.4	0
243	Structure of the low-latitude magnetopause: MAGION-4 observations. Annales Geophysicae, 1997, 15, 553-561.	1.6	27
244	Small scale observation of magnetopause motion: preliminary results of the INTERBALL project. Annales Geophysicae, 1997, 15, 562-569.	1.6	96
245	Multipoint study of the solar wind: INTERBALL contribution to the topic. Advances in Space Research, 1997, 20, 659-670.	2.6	3
246	Two-point measurement of hot plasma structures in the magnetotail lobes. Advances in Space Research, 1997, 20, 993-997.	2.6	6
247	Two point observation of magnetopause motion: The INTERBALL project. Advances in Space Research, 1997, 20, 801-807.	2.6	9
248	Cusp and boundary layer observations by INTERBALL. Advances in Space Research, 1997, 20, 823-832.	2.6	21
249	Energetic particles in the vicinity of the dawn magnetopause. Advances in Space Research, 1997, 20, 851-856.	2.6	2
250	Auroral Oval Dynamics in Different Spatial Scales. Journal of Geomagnetism and Geoelectricity, 1997, 49, S151-S157.	0.9	0
251	Short time high energy electron fluxes in day-side magnetosphere. Advances in Space Research, 1996, 17, 35-38.	2.6	2
252	Dynamics of the polar cap boundaries: Multipoint measurements. Advances in Space Research, 1996, 18, 131-134.	2.6	3

#	Article	IF	CITATIONS
253	Latitudinal energy dispersion of the ion and electron fluxes in the auroral oval. Advances in Space Research, 1996, 18, 127-130.	2.6	36
254	Charged Particle Behaviour during the Active Phase of the APEX Experiment Journal of Geomagnetism and Geoelectricity, 1996, 48, 57-64.	0.9	1
255	Turbulent processes upstream and downstream of the bow shock. Advances in Space Research, 1995, 15, 323-327.	2.6	1
256	Response of the electron energy distribution to an artificially emitted electron beam: Apex experiment. Advances in Space Research, 1995, 15, 33-36.	2.6	12
257	Ion distribution function in the magnetosheath: Fine structure. Advances in Space Research, 1994, 14, 31-34.	2.6	3
258	A behaviour of electron and ion energy and angular distribution during the active APEX experiment. Advances in Space Research, 1993, 13, 113-116.	2.6	10
259	The Earth's bow shock and magnetopause position as a result of the solar wind-magnetosphere interaction. Journal of Atmospheric and Solar-Terrestrial Physics, 1991, 53, 1049-1054.	0.9	40
260	Variability of coronal structures and ion components in the solar wind. European Physical Journal D, 1991, 41, 1001-1008.	0.4	1
261	The method of thermodynamic parameters calculation and its application on the study of protons and alpha particles behaviour in the bow shock. European Physical Journal D, 1991, 41, 381-392.	0.4	1
262	Some comments on the ion distribution function evolution in the quasiparallel shock. Advances in Space Research, 1991, 11, 223-226.	2.6	2
263	Solar wind protons, alpha particles and electrons in the shock wave and the potential barrier (The) Tj ETQq1 1 0.	784314 rg 0.4	gBT ₁ /Overlock
264	Bow shock motion with two-point observations: Prognoz 7, 8 and ISEE 1, 2; Prognoz 10 and IMP 8. Advances in Space Research, 1988, 8, 171-174.	2.6	8
265	Dynamics of the earth's bow shock position. Advances in Space Research, 1988, 8, 167-170.	2.6	9
266	Study of the fine structure of charged particles flows in the bow shock wave. European Physical Journal D, 1987, 37, 239-249.	0.4	0
267	Some features of solar wind protons, α particles and heavy ions behaviour: The Prognoz 7 and Prognoz 8 experimental results. European Physical Journal D, 1987, 37, 759-774.	0.4	8
268	Ion distribution function dynamics near the strong shock front (Project Intershock). Advances in Space Research, 1986, 6, 41-44.	2.6	9
269	Project intershock: Complex analysis of the bow shock crossing on 7 May 1985. Advances in Space Research, 1986, 6, 45-48.	2.6	7
270	Acceleration of electrons at the quasi-perpendicular bow shock according to intershock data. Advances in Space Research, 1986, 6, 49-52.	2.6	4

#	Article	IF	CITATIONS
271	Instabilities of ion flow observed downstream of the Earth's bow shock. Advances in Space Research, 1986, 6, 53-56.	2.6	1
272	Energetic proton spectra upstream of the bow shock from intershock project. Advances in Space Research, 1986, 6, 67-70.	2.6	22
273	Measurement of plasma parameters in solar wind and in shock waves. European Physical Journal D, 1985, 35, 557-567.	0.4	1
274	Dispersion of plasma parameters measured by a sonding satellite during a repeated transit through a bow shock wave. European Physical Journal D, 1985, 35, 568-578.	0.4	3
275	Measurement of the electron distribution function in flowing afterglow plasma by means of Langmuir probe. European Physical Journal D, 1983, 33, 1226-1229.	0.4	6
276	Direct display of the electron energy distribution in plasma by means of analog correlator. European Physical Journal D, 1974, 24, 117-118.	0.4	2