Andrés J Cortés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9181708/publications.pdf

Version: 2024-02-01

45 papers 3,418 citations

29 h-index

172386

276775 41 g-index

47 all docs

47 docs citations

47 times ranked

2277 citing authors

#	Article	IF	CITATIONS
1	Páramo is the world's fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics, 2013, 4, 192.	1.1	341
2	SNP marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2011, 123, 827-845.	1.8	182
3	Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean. BMC Genetics, 2012, 13, 48.	2.7	143
4	Diversification and Population Structure in Common Beans (Phaseolus vulgaris L.). PLoS ONE, 2012, 7, e49488.	1.1	139
5	A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2013, 126, 535-548.	1.8	139
6	Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia, 2014, 175, 219-229.	0.9	139
7	Drought Tolerance in Wild Plant Populations: The Case of Common Beans (Phaseolus vulgaris L.). PLoS ONE, 2013, 8, e62898.	1.1	137
8	Genotyping by Sequencing and Genome–Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. Frontiers in Plant Science, 2018, 9, 128.	1.7	129
9	Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. Plant Science, 2016, 242, 250-259.	1.7	122
10	Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2012, 125, 1069-1085.	1.8	114
11	The snow and the willows: earlier spring snowmelt reduces performance in the lowâ€lying alpine shrub <i>Salix herbacea</i> . Journal of Ecology, 2016, 104, 1041-1050.	1.9	110
12	Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS ONE, 2018, 13, e0189597.	1.1	108
13	Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity, 2014, 113, 233-239.	1.2	101
14	The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment. PLoS ONE, 2015, 10, e0122395.	1.1	101
15	Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genetics, 2012, 13, 58.	2.7	100
16	Evolutionary potential in the Alpine: trait heritabilities and performance variation of the dwarf willow <i>Salix herbacea</i> from different elevations and microhabitats. Ecology and Evolution, 2016, 6, 3940-3952.	0.8	98
17	What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic and Applied Ecology, 2014, 15, 305-315.	1.2	95
18	Modern Strategies to Assess and Breed Forest Tree Adaptation to Changing Climate. Frontiers in Plant Science, 2020, 11, 583323.	1.7	95

#	Article	IF	CITATIONS
19	Small-scale drivers: the importance of nutrient availability and snowmelt timing on performance of the alpine shrub Salix herbacea. Oecologia, 2016, 180, 1015-1024.	0.9	92
20	SNP discovery, gene diversity, and linkage disequilibrium in wild populations of Populus tremuloides. Tree Genetics and Genomes, 2012, 8, 821-829.	0.6	86
21	Predicting Thermal Adaptation by Looking Into Populations' Genomic Past. Frontiers in Genetics, 2020, 11, 564515.	1.1	79
22	Genome-Wide SNP Identification and Association Mapping for Seed Mineral Concentration in Mung Bean (Vigna radiata L.). Frontiers in Genetics, 2020, 11, 656.	1.1	77
23	Last-Generation Genome–Environment Associations Reveal the Genetic Basis of Heat Tolerance in Common Bean (Phaseolus vulgaris L.). Frontiers in Genetics, 2019, 10, 954.	1.1	73
24	Harnessing Crop Wild Diversity for Climate Change Adaptation. Genes, 2021, 12, 783.	1.0	73
25	With a little help from my friends: Community facilitation increases performance in the dwarf shrub Salix herbacea. Basic and Applied Ecology, 2015, 16, 202-209.	1.2	59
26	On the Causes of Rapid Diversification in the $P\tilde{A}_i$ ramos: Isolation by Ecology and Genomic Divergence in Espeletia. Frontiers in Plant Science, 2018, 9, 1700.	1.7	58
27	Does the Genomic Landscape of Species Divergence in Phaseolus Beans Coerce Parallel Signatures of Adaptation and Domestication?. Frontiers in Plant Science, 2018, 9, 1816.	1.7	56
28	Climate Vulnerability Assessment of the Espeletia Complex on $P\tilde{A}_i$ ramo Sky Islands in the Northern Andes. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	48
29	Allelic Diversity at Abiotic Stress Responsive Genes in Relationship to Ecological Drought Indices for Cultivated Tepary Bean, Phaseolus acutifolius A. Gray, and Its Wild Relatives. Genes, 2021, 12, 556.	1.0	38
30	On the Origin of the Common Bean (<i>Phaseolus vulgaris</i> L.). American Journal of Plant Sciences, 2013, 04, 1998-2000.	0.3	38
31	Multi-Environment Yield Components in Advanced Common Bean (Phaseolus vulgaris L.) \tilde{A} — Tepary Bean (P. acutifolius A. Gray) Interspecific Lines for Heat and Drought Tolerance. Agronomy, 2021, 11, 1978.	1.3	35
32	Evaluating the accuracy of genomic prediction for the management and conservation of relictual natural tree populations. Tree Genetics and Genomes, 2021, 17, 1.	0.6	32
33	Rootstock-Mediated Genetic Variance in Cadmium Uptake by Juvenile Cacao (Theobroma cacao L.) Genotypes, and Its Effect on Growth and Physiology. Frontiers in Plant Science, 2021, 12, 777842.	1.7	23
34	On how role versatility boosts an STI. Journal of Theoretical Biology, 2018, 440, 66-69.	0.8	22
35	Inheritance of Rootstock Effects in Avocado (Persea americana Mill.) cv. Hass. Frontiers in Plant Science, 2020, 11, 555071.	1.7	21
36	Integrative Pre-Breeding for Biotic Resistance in Forest Trees. Plants, 2021, 10, 2022.	1.6	16

Andrés J Cortés

#	Article	IF	Citations
37	Local Scale Genetic Diversity and its Role in Coping with Changing Climate. , 0, , .		14
38	Evolutionary Genetics of Crop-Wild Complexes. Genes, 2022, 13, 1.	1.0	13
39	Inheritance of Yield Components and Morphological Traits in Avocado cv. Hass From "Criollo―"Elite Trees―via Half-Sib Seedling Rootstocks. Frontiers in Plant Science, 2022, 13, .	1.7	12
40	Lessons from Common Bean on How Wild Relatives and Landraces Can Make Tropical Crops More Resistant to Climate Change. , 2018, , .		10
41	Whole Transcriptome Sequencing Unveils the Genomic Determinants of Putative Somaclonal Variation in Mint (Mentha L.). International Journal of Molecular Sciences, 2022, 23, 5291.	1.8	10
42	Naturally Available Genetic Adaptation in Common Bean and Its Response to Climate Change., 2018,,.		9
43	Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing. Molecular Horticulture, 2022, 2, .	2.3	5
44	Prevalence in MSM Is Enhanced by Role Versatility. Advances in Healthcare Information Systems and Administration Book Series, 2018, , 140-148.	0.2	4
45	Bean Genome Diversity Reveals the Genomic Consequences of Speciation, Adaptation, and Domestication., 2019, , .		O