Liliang Ouyang

List of Publications by Citations

Source: https://exaly.com/author-pdf/9181613/liliang-ouyang-publications-by-citations.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 2,588 22 48 g-index

48 g-index

48 ext. papers ext. citations avg, IF

20 January 18 January 19 January 19

#	Paper	IF	Citations
42	Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. <i>Biofabrication</i> , 2016 , 8, 035020	10.5	400
41	3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 1743-1751	5.5	365
40	Three-dimensional printing of Hela cells for cervical tumor model in vitro. <i>Biofabrication</i> , 2014 , 6, 0350	01 10.5	321
39	A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo-crosslinkable Inks. <i>Advanced Materials</i> , 2017 , 29, 1604983	24	310
38	The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. <i>Biofabrication</i> , 2015 , 7, 045002	10.5	181
37	Three-dimensional in vitro cancer models: a short review. <i>Biofabrication</i> , 2014 , 6, 022001	10.5	101
36	Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. <i>Biofabrication</i> , 2015 , 7, 044101	10.5	96
35	Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. <i>Biofabrication</i> , 2012 , 4, 025007	10.5	95
34	3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. <i>Biofabrication</i> , 2015 , 7, 015010	10.5	77
33	In Vitro Angiogenesis of 3D Tissue Engineered Adipose Tissue. <i>Journal of Bioactive and Compatible Polymers</i> , 2009 , 24, 5-24	2	72
32	Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. <i>Science Advances</i> , 2020 , 6,	14.3	56
31	Void-free 3D Bioprinting for In-situ Endothelialization and Microfluidic Perfusion. <i>Advanced Functional Materials</i> , 2020 , 30, 1908349	15.6	50
30	Mechanical characterization of bioprinted in vitro soft tissue models. <i>Biofabrication</i> , 2013 , 5, 045010	10.5	49
29	3D printing of photocurable poly(glycerol sebacate) elastomers. <i>Biofabrication</i> , 2016 , 8, 045004	10.5	46
28	Advances in the Fabrication of Biomaterials for Gradient Tissue Engineering. <i>Trends in Biotechnology</i> , 2021 , 39, 150-164	15.1	37
27	Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering. <i>Advanced Materials</i> , 2019 , 31, e1900291	24	36
26	Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 1430-43	4.9	35

(2022-2017)

25	Norbornene-modified poly(glycerol sebacate) as a photocurable and biodegradable elastomer. <i>Polymer Chemistry</i> , 2017 , 8, 5091-5099	4.9	31
24	Assembling Living Building Blocks to Engineer Complex Tissues. <i>Advanced Functional Materials</i> , 2020 , 30, 1909009	15.6	31
23	3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. <i>Biofabrication</i> , 2018 , 10, 044101	10.5	30
22	Facile Biofabrication of Heterogeneous Multilayer Tubular Hydrogels by Fast Diffusion-Induced Gelation. <i>ACS Applied Materials & Diffusion (Naterials & Diffusio</i>	9.5	28
21	Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 3108-3124	5.5	23
20	Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. <i>Biofabrication</i> , 2017 , 9, 032001	10.5	16
19	Stem Cells: Hepatic Differentiation of Human Embryonic Stem Cells as Microscaled Multilayered Colonies Leading to Enhanced Homogeneity and Maturation (Small 21/2014). <i>Small</i> , 2014 , 10, 4310-431	011	16
18	An integrated cell printing system for the construction of heterogeneous tissue models. <i>Acta Biomaterialia</i> , 2019 , 95, 245-257	10.8	14
17	Biomaterial-assisted scalable cell production for cell therapy. <i>Biomaterials</i> , 2020 , 230, 119627	15.6	12
16	Modeling on Microdroplet Formation for Cell Printing Based on Alternating Viscous-Inertial Force Jetting. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2017 , 139,	3.3	9
15	Optimizing Bifurcated Channels within an Anisotropic Scaffold for Engineering Vascularized Oriented Tissues. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000782	10.1	9
14	Responsive biomaterials for 3D bioprinting: A review. <i>Materials Today</i> , 2022 ,	21.8	8
13	Review of emerging nanotechnology in bone regeneration: progress, challenges, and perspectives. <i>Nanoscale</i> , 2021 , 13, 10266-10280	7.7	8
12	Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 2995-3004	5.5	5
11	3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cu-Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering <i>Small</i> , 2022 , e2104996	11	5
10	Study on Microextrusion-based 3D Bioprinting and Bioink Crosslinking Mechanisms. <i>Springer Theses</i> , 2019 ,	0.1	4
9	Review on biofabrication and applications of heterogeneous tumor models. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2019 , 13, 2101-2120	4.4	2
8	Tunable Microgel-Templated Porogel (MTP) Bioink for 3D Bioprinting Applications <i>Advanced Healthcare Materials</i> , 2022 , e2200027	10.1	2

7	3D Bioprinting of Thermal-Sensitive Bioink. <i>Springer Theses</i> , 2019 , 63-80	0.1	1
6	3D Bioprinting and Bioink: Background. <i>Springer Theses</i> , 2019 , 7-23	0.1	1
5	Biological Characterization and Applications. Springer Theses, 2019, 105-125	0.1	1
4	Roadmap for Additive Manufacturing: Toward Intellectualization and Industrialization 2022 , 1, 100014		1
3	Advances in 3D Bioprinting 2022, 1, 100011		О
2	3D Bioprinting of Non-viscous Bioink. <i>Springer Theses</i> , 2019 , 81-104	0.1	
1	3D Bioprinting of Shear-Thinning Self-assembly Bioink. <i>Springer Theses</i> , 2019 , 43-61	0.1	